0000000000067733

AUTHOR

Andreas Prokop

showing 12 related works from this author

Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites

2003

Insect neurons are individually identifiable and have been used successfully to study principles of the formation and function of neuronal circuits. In the fruitfly Drosophila, studies on identifiable neurons can be combined with efficient genetic approaches. However, to capitalise on this potential for studies of circuit formation in the CNS of Drosophila embryos or larvae, we need to identify pre- and postsynaptic elements of such circuits and describe the neuropilar territories they occupy. Here, we present a strategy for neurite mapping, using a set of evenly distributed landmarks labelled by commercially available anti-Fasciclin2 antibodies which remain comparatively constant between s…

Central Nervous SystemEmbryo NonmammalianNeuropilTime FactorsNeuritePeriod (gene)CD8 AntigensModels BiologicalSynapseNeurons EfferentPostsynaptic potentialNeuritesAnimalsDrosophila ProteinsDrosophilaMolecular BiologybiologyfungiNeurogenesisGene Expression Regulation DevelopmentalAnatomyCell Biologybiology.organism_classificationNeuronal circuitsLarvaGene TargetingDrosophilaNeuroscienceDevelopmental BiologyDevelopmental Biology
researchProduct

Are dendrites in Drosophila homologous to vertebrate dendrites?

2005

AbstractDendrites represent arborising neurites in both vertebrates and invertebrates. However, in vertebrates, dendrites develop on neuronal cell bodies, whereas in higher invertebrates, they arise from very different neuronal structures, the primary neurites, which also form the axons. Is this anatomical difference paralleled by principal developmental and/or physiological differences? We address this question by focussing on one cellular model, motorneurons of Drosophila and characterise the compartmentalisation of these cells. We find that motorneuronal dendrites of Drosophila share with typical vertebrate dendrites that they lack presynaptic but harbour postsynaptic proteins, display c…

NeuriteCompartmentalisationDendriteDendriteAnimals Genetically ModifiedMicePostsynaptic potentialbiology.animalmedicineAnimalsUrbilaterianMolecular BiologyMosaic analysisCytoskeletonCells CulturedMotor NeuronsDendritic spikeTransmitter receptorsbiologyVertebrateCell PolarityCell DifferentiationCell BiologyAnatomyDendritesbiology.organism_classificationBiological EvolutionCell biologyRatsmedicine.anatomical_structureDrosophila melanogasterDrosophilaSomaCalciumRabbitsCellular modelDevelopmental BiologyDevelopmental biology
researchProduct

ROP, the Drosophila Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner.

1998

The Sec1 family of proteins is thought to function in both non-neuronal and neuronal secretion, although the precise role of this protein family has not been defined. Here, we study the function of ROP, the Drosophila Sec1 homolog, in neurotransmitter release. Electrophysiological analyses of transgenic lines overexpressing ROP and syntaxin, a presynaptic membrane protein, indicate that ROP interacts with syntaxin in vivo. Characterization of four point mutations in ROP shows that they fall into two phenotypic classes. Two mutations cause a dramatic reduction in both evoked and spontaneous neurotransmitter release. In contrast, the other two mutations reveal an increase in evoked neurotrans…

Munc18 Proteinscongenital hereditary and neonatal diseases and abnormalitiesProtein familyNerve Tissue ProteinsNeurotransmissionBiologySynaptic TransmissionGeneral Biochemistry Genetics and Molecular BiologySyntaxin bindingExocytosischemistry.chemical_compoundSyntaxinAnimalsDrosophila ProteinsNeurotransmitterMolecular BiologyNeurotransmitter AgentsGeneral Immunology and MicrobiologyQa-SNARE ProteinsGeneral NeuroscienceMembrane ProteinsSyntaxin 3eye diseasesCell biologychemistryDrosophilaResearch ArticleThe EMBO journal
researchProduct

A new culturing strategy optimises Drosophila primary cell cultures for structural and functional analyses

2004

Abstract Neurons in primary cell cultures provide important experimental possibilities complementing or substituting those in the nervous system. However, Drosophila primary cell cultures have unfortunate limitations: they lack either a range of naturally occurring cell types, or of mature physiological properties. Here, we demonstrate a strategy which supports both aspects integrated in one culture: Initial culturing in conventional serum-supplemented Schneider's medium (SM 20K ) guarantees acquisition of all properties known from 30 years of work on cell type-specific differentiation in this medium. Through subsequent shift to newly developed active Schneider's medium (SM active ), neuron…

Nervous systemSerotoninCell typePlasticityCellCell Culture TechniquesBiologySynaptic TransmissionFM dyeschemistry.chemical_compoundmedicineAnimalsSynapse formationNeurotransmitterDrosophilaMolecular Biologygamma-Aminobutyric AcidNeuronsCell lineageNeural stem cellsCell DifferentiationAnatomyCell BiologySynaptic activitybiology.organism_classificationCell culturesNeural stem cellCulture MediaCell biologymedicine.anatomical_structurechemistryCell cultureSynaptic plasticityDrosophilaAction potentialsDevelopmental BiologyDevelopmental Biology
researchProduct

The muscleblind gene participates in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2.

1998

We report the embryonic phenotype of muscleblind (mbl), a recently described Drosophila gene involved in terminal differentiation of adult ommatidia. mbl is a nuclear protein expressed late in the embryo in pharyngeal, visceral, and somatic muscles, the ventral nerve cord, and the larval photoreceptor system. All three mbl alleles studied exhibit a lethal phenotype and die as stage 17 embryos or first instar larvae. These larvae are partially paralyzed, show a characteristically contracted abdomen, and lack striation of muscles. Our analysis of the somatic musculature shows that the pattern of muscles is established correctly, and they form morphologically normal synapses. Ultrastructural a…

Central Nervous SystemSomatic cellMuscle Fibers SkeletalNeuromuscular JunctionMuscle ProteinsGenes InsectBiologymuscle attachmentsmuscleblindMesodermTendonsEctodermAnimalsDrosophila ProteinsConnectinRNA MessengerNuclear proteinMuscle SkeletalMolecular BiologyZ-bandsCell NucleusEpidermis (botany)MyogenesisMEF2 Transcription FactorsDrosophila.Gene Expression Regulation DevelopmentalNuclear ProteinsEmbryoCell DifferentiationCell BiologyAnatomybacterial infections and mycosesEmbryonic stem cellPhenotypeCell biologyDNA-Binding ProteinsMyogenic Regulatory FactorsVentral nerve cordMutationInsect ProteinsDrosophilaPhotoreceptor Cells InvertebratemyogenesisDevelopmental BiologyTranscription FactorsDevelopmental biology
researchProduct

In developing Drosophila neurones the production of γ-amino butyric acid is tightly regulated downstream of glutamate decarboxylase translation and c…

2003

The presented work pioneers the embryonic Drosophila CNS for studies of the developmental regulation and function of gamma-amino butyric acid (GABA). We describe for the first time the developmental pattern of GABA in Drosophila and address underlying regulatory mechanisms. Surprisingly, and in contrast to vertebrates, detectable levels of GABA occur late during Drosophila neurogenesis, after essential neuronal proliferation and growth have taken place and synaptogenesis has been initiated. This timeline is almost unchanged when the GABA synthetase glutamate decarboxylase (GAD) is strongly misexpressed throughout the nervous system suggesting a tight post-translational regulation of GABA ex…

Regulation of gene expressionNervous systemNeurogenesisGlutamate decarboxylaseSynaptogenesisTranslation (biology)Biologybiology.organism_classificationBiochemistryCellular and Molecular Neurosciencemedicine.anatomical_structureBiochemistrymedicineNeuronDrosophila melanogasterJournal of Neurochemistry
researchProduct

The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster.

1991

ABSTRACT Embryonic and postembryonic neuroblasts in the thoracic ventral nerve cord of Drosophila melanogaster have the same origin. We have traced the development of threefold-labelled single precursor cells from the early gastrula stage to late larval stages. The technique allows in the same individual monitoring of progeny cells at embryonic stages (in vivo) and differentially staining embryonic and postembryonic progeny within the resulting neural clone at late postembryonic stages. The analysis reveals that postembryonic cells always appear together with embryonic cells in one clone. Further-more, BrdU labelling suggests that the embryonic neuroblast itself rather than one of its proge…

Central Nervous Systemanimal structuresNeurogenesisClone (cell biology)BiologyNeuroblastNeuroblasts/dk/atira/pure/subjectarea/asjc/2700/2702AnimalsBrdUMolecular BiologyCell lineageNeuroblast proliferationStem CellsfungiEmbryogenesisCell BiologyAnatomyGastrulaEmbryonic stem cellCell biologyGastrulationDrosophila melanogasterBromodeoxyuridineVentral nerve cordDrosophilaAnatomy/dk/atira/pure/subjectarea/asjc/1300/1307Ganglion mother cellDevelopmental BiologyDevelopment (Cambridge, England)
researchProduct

A common precursor for glia and neurons in the embryonic CNS of Drosophila gives rise to segment-specific lineage variants

1993

ABSTRACT The nervous system consists of two classes of cells, neurons and glia, which differ in morphology and function. They derive from precursors located in the neurogenic region of the ectoderm. In this study, we present the complete embryonic lineage of a neuroectodermal precursor in Drosophila that gives rise to neurons as well as glia in the abdominal CNS. This lineage is conserved among different Drosophila species. We show that neuronal and glial cell types in this clone derive from one segregating precursor, previously described as NB1-1. Thus, in addition to neuroblasts and glioblasts, there exists a third class of CNS precursors in Drosophila, which we call neuroglioblasts. We f…

Central Nervous SystemNervous systemanimal structuresLineage (genetic)Cell TransplantationCellular differentiationEctodermBiologySpecies SpecificityNeuroblastCell MovementAbdomenEctodermMorphogenesismedicineAnimalsMolecular BiologyHorseradish PeroxidaseNeuronsStem CellsCell DifferentiationGastrulaAnatomyCarbocyaninesThoraxCell biologyTransplantationDrosophila melanogastermedicine.anatomical_structurenervous systemNeurogliaDrosophilaNeuronNeurogliaDevelopmental BiologyDevelopment
researchProduct

Compartmentalization of Central Neurons inDrosophila: A New Strategy of Mosaic Analysis Reveals Localization of Presynaptic Sites to Specific Segment…

2002

Synaptogenesis in the CNS has received far less attention than the development of neuromuscular synapses, although only central synapses allow the study of neuronal postsynaptic mechanisms and display a greater variety of structural and functional features. This neglect is attributable mainly to the enormous complexity of the CNS, which makes the visualization of individual synapses on defined neuronal processes very difficult. We overcome this obstacle and demonstrate by confocal microscopy the specific arrangement of output synapses on individual neurites. These studies are performed via genetic mosaic strategies in the CNS of the fruitfly Drosophila melanogaster. First, we use targeted e…

Central Nervous SystemEmbryo NonmammalianNeuropilNeuriteCell TransplantationTransport pathwaysPresynaptic TerminalsSynaptogenesisGene ExpressionNerve Tissue ProteinsBiologylaw.inventionGenes ReporterInterneuronsConfocal microscopylawPostsynaptic potentialNeuritesAnimalsCell LineageARTICLENeuronsTransplantation ChimeraMosaicismGeneral NeuroscienceGene targetingbiology.organism_classificationCell CompartmentationTransplantationDrosophila melanogasterGene TargetingMutationSynapsesDrosophila melanogasterNeuroscienceThe Journal of Neuroscience
researchProduct

Normal Function of the mushroom body defect Gene of Drosophila Is Required for the Regulation of the Number and Proliferation of Neuroblasts

1994

In the developing central nervous system of Drosophila, proliferation follows a reproducible and well-described spatial and temporal pattern. This pattern involves a defined number and distribution of neural stem cells (neuroblasts), as well as a precisely regulated time course of division of these neuroblasts. We show that mutations in the mushroom body defect (mud) gene interfere with the regulation of this pattern in a rather specific manner. In the abdominal neuromeres a subset of neuroblasts prolongs the period of proliferation. Additional daughter cells persist into the imago. Similar defects are expressed in the anterior ventral nerve cord and in the lateral central brain region. In …

Neuronsanimal structuresCell divisionStem CellsfungiBrainCell CountCell BiologyAnatomyBiologyNeuromereNeural stem cellCell biologynervous systemNeuroblastVentral nerve cordMutationMushroom bodiesAnimalsDrosophilaStem cellMolecular BiologyGanglion mother cellCell DivisionDevelopmental BiologyDevelopmental Biology
researchProduct

Shortstop Recruits EB1/APC1 and Promotes Microtubule Assembly at the Muscle-Tendon Junction

2003

Abstract Background: Shot (previously named Kakapo), is a Drosophila Plakin family member containing both Actin binding and microtubule binding domains. In Drosophila , it is required for a wide range of processes, including axon extension, dendrite formation, axonal terminal arborization at the neuromuscular junction, tendon cell development, and adhesion of wing epithelium. Results: To address how Shot exerts its activity at the molecular level, we investigated the molecular interactions of Shot with candidate proteins in mature larval tendon cells. We show that Shot colocalizes with EB1/APC1 and with a compact microtubule array extending between the muscle-tendon junction and the cuticle…

Blotting WesternFluorescent Antibody TechniqueBiologyTransfectionMicrotubulesCell junctionGeneral Biochemistry Genetics and Molecular BiologyTendonsTendon cellMicrotubuleAnimalsDrosophila ProteinsCytoskeletonActinPlakinAgricultural and Biological Sciences(all)Biochemistry Genetics and Molecular Biology(all)MusclesAxon extensionMicrofilament ProteinsfungiPrecipitin TestsCell biologyCytoskeletal ProteinsIntercellular JunctionsLarvaMuscle tendon junctionDrosophilaGeneral Agricultural and Biological SciencesCurrent Biology
researchProduct

Papillote and Piopio:DrosophilaZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization

2005

Adhesion between epithelial cells and extracellular substrates is normally mediated through basal adhesion complexes. However, some cells also possess comparable junctions on their apical surface. Here, we describe two new Drosophila proteins, Piopio and Papillote, that are required for the link between the apical epithelial surface and the overlying apical extracellular matrix (aECM). The two proteins share a zona pellucida (ZP) domain with mammalian aECM components, including the tectorins found in the vertebrate inner ear. Tagged versions of both proteins localized to the apical epithelial surface. Mutations in piopio, papillote and dumpy (another gene encoding a ZP-domain protein) cause…

Molecular Sequence DataBiologyMicrotubulesEpitheliumExtracellular matrixMicrotubuleCell AdhesionmedicineExtracellularAnimalsDrosophila ProteinsWings AnimalAmino Acid SequenceCell adhesionCytoskeletonZona pellucidaMicrotubule nucleationExtracellular Matrix ProteinsSequence Homology Amino AcidMembrane ProteinsEpithelial CellsCell BiologyExtracellular MatrixCell biologyMicroscopy ElectronDrosophila melanogasterPhenotypemedicine.anatomical_structureMicroscopy FluorescenceMutationCarrier ProteinsDrosophila ProteinJournal of Cell Science
researchProduct