0000000000069677

AUTHOR

Chunhong Yang

Structural and Functional Analysis of the Antiparallel Strands in the Lumenal Loop of the Major Light-harvesting Chlorophyll a/b Complex of Photosystem II (LHCIIb) by Site-directed Mutagenesis

The light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCIIb) fulfills multiple functions, such as light harvesting and energy dissipation under different illuminations. The crystal structure of LHCIIb at the near atomic resolution reveals an antiparallel strands structure in the lumenal loop between the transmembrane helices B/C. To study the structural and functional significances of this structure, three amino acids (Val-119, His-120, and Ser-123) in this region have been exchanged to Phe, Leu, and Gly, respectively, and the influence of the mutagenesis on the structure and function of LHCIIb has been investigated. The results are as follows. 1) Circular dichroism spect…

research product

The negatively charged amino acids in the lumenal loop influence the pigment binding and conformation of the major light-harvesting chlorophyll a/b complex of photosystem II

AbstractThe major chlorophyll (Chl) a/b complexes of photosystem II (LHCIIb), in addition to their primary light-harvesting function, play key roles in the organization of the granal ultrastructure of the thylakoid membranes and in various regulatory processes. These functions depend on the structural stability and flexibility of the complexes. The lumenal side of LHCIIb is exposed to broadly variable pH environments, due to the build-up and decay of the pH gradient during photosynthesis. Therefore, the negatively charged amino acids in the lumenal loop might be of paramount importance for adjusting the structure and functions of LHCIIb. In order to clarify the structural roles of these res…

research product

In Vitro Techniques

Driven in part by the development of genomics, proteomics, and bioinformatics as new disciplines, there has been a tremendous resurgence of interest in physical methods to investigate macromolecular structure and function in the context of living cells. This volume in Methods in Cell Biology is devoted to biophysical techniques in vitro and their applications to cellular biology. The volume covers methods-oriented chapters on fundamental as well as cutting-edge techniques in molecular and cellular biophysics.This book is directed toward the broad audience of cell biologists, biophysicists, pharmacologists, and molecular biologists who employ classical and modern biophysical technologies or …

research product

Thermal stability of trimeric light-harvesting chlorophyll a/b complex (LHCIIb) in liposomes of thylakoid lipids.

The major light-harvesting chlorophyll a/b complex (LHCIIb) of photosystem (PS) II functions by harvesting light energy and by limiting and balancing the energy flow directed towards the PSI and PSII reaction centers. The complex is predominantly trimeric; however, the monomeric form may play a role in one or several of the regulatory functions of LHCIIb. In this work the dissociation temperature was measured of trimeric LHCIIb isolated from Pisum thylakoids and inserted into liposomes made of various combinations of thylakoid lipids at various protein densities. Dissociation was measured by monitoring a trimer-specific circular dichroism signal in the visible range. The LHCIIb density in t…

research product

Structural stability and properties of three isoforms of the major light-harvesting chlorophyll a/b complexes of photosystem II.

AbstractThree isoforms of the major light-harvesting chlorophyll (Chl) a/b complexs of photosystem II (LHCIIb) in the pea, namely, Lhcb1, Lhcb2, and Lhcb3, were obtained by overexpression of apoprotein in Escherichia coli and by successfully refolding these isoforms with thylakoid pigments in vitro. The sequences of the protein, pigment stoichiometries, spectroscopic characteristics, thermo- and photostabilities of different isoforms were analysed. Comparison of their spectroscopic properties and structural stabilities revealed that Lhcb3 differed strongly from Lhcb1 and Lhcb2 in both respects. It showed the lowest Qy transition energy, with its reddest absorption about 2 nm red-shifted, an…

research product

Direct energy transfer from the major antenna to the photosystem II core complexes in the absence of minor antennae in liposomes

AbstractMinor antennae of photosystem (PS) II, located between the PSII core complex and the major antenna (LHCII), are important components for the structural and functional integrity of PSII supercomplexes. In order to study the functional significance of minor antennae in the energetic coupling between LHCII and the PSII core, characteristics of PSII–LHCII proteoliposomes, with or without minor antennae, were investigated. Two types of PSII preparations containing different antenna compositions were isolated from pea: 1) the PSII preparation composed of the PSII core complex, all of the minor antennae, and a small amount of major antennae (MCC); and 2) the purified PSII dimeric core comp…

research product

The Light-Harvesting Chlorophyll a/b Complex Can Be Reconstituted in Vitro from Its Completely Unfolded Apoprotein

The major light-harvesting chlorophyll a/b protein (LHCIIb) of higher plants is one of the few membrane proteins that can be refolded in vitro. During folding, the apoprotein is assembled with pigments to form a structurally authentic and functional pigment--protein complex. All reconstitution procedures used so far include solubilization of the apoprotein in sodium dodecyl sulfate (SDS) where the protein adopts approximately half of its alpha-helical folding present in the native structure. This paper shows that this preformed alpha-helix is not a prerequisite for LHCIIb folding in vitro. The apoprotein can also be reconstituted starting from a solution in guanidinium hydrochloride (Gnd) w…

research product

Exchange of Pigment-Binding Amino Acids in Light-Harvesting Chlorophyll a/b Protein

Four amino acids in the major light-harvesting chlorophyll (Chl) a/b complex (LHCII) that are thought to coordinate Chl molecules have been exchanged with amino acids that presumably cannot bind Chl. Amino acids H68, Q131, Q197, and H212 are positioned in helixes B, C, A, and D, respectively, and, according to the LHCII crystal structure [Kühlbrandt, W., et al. (1994) Nature 367, 614-621], coordinate the Chl molecules named a(5), b(6), a(3), and b(3). Moreover, a double mutant was analyzed carrying exchanges at positions E65 and H68, presumably affecting Chls a(4) and a(5). All mutant proteins could be reconstituted in vitro with pigments, although the thermal stability of the resulting mut…

research product