0000000000069906

AUTHOR

Risto Ojajärvi

Mean-field theory for superconductivity in twisted bilayer graphene

Recent experiments show how a bilayer graphene twisted around a certain magic angle becomes superconducting as it is doped into a region with approximate flat bands. We investigate the mean-field s-wave superconducting state in such a system and show how the state evolves as the twist angle is tuned, and as a function of the doping level. We argue that part of the experimental findings could well be understood to result from an attractive electron-electron interaction mediated by electron-phonon coupling, but the flat-band nature of the excitation spectrum also makes the superconductivity quite unusual. For example, as the flat-band states are highly localized around certain spots in the st…

research product

Competition of electron-phonon mediated superconductivity and Stoner magnetism on a flat band

The effective attractive interaction between electrons, mediated by electron-phonon coupling, is a well-established mechanism of conventional superconductivity. In metals exhibiting a Fermi surface, the critical temperature of superconductivity is exponentially smaller than the characteristic phonon energy. Therefore, such superconductors are found only at temperatures below a few kelvin. Systems with flat energy bands have been suggested to cure the problem and provide a route to room-temperature superconductivity, but previous studies are limited to only BCS models with an effective attractive interaction. Here we generalize Eliashberg's theory of strong-coupling superconductivity to syst…

research product

Giant enhancement to spin battery effect in superconductor/ferromagnetic insulator systems

We develop a theory of the spin battery effect in superconductor/ferromagnetic insulator (SC/FI) systems taking into account the magnetic proximity effect. We demonstrate that the spin-energy mixing enabled by the superconductivity leads to the enhancement of spin accumulation by several orders of magnitude relative to the normal state. This finding can explain the recently observed giant inverse spin Hall effect generated by thermal magnons in the SC/FI system. We suggest a nonlocal electrical detection scheme which can directly probe the spin accumulation driven by the magnetization dynamics. We predict a giant Seebeck effect converting the magnon temperature bias into the nonlocal voltag…

research product

Spin and charge currents driven by the Higgs mode in high-field superconductors

The Higgs mode in superconducting materials describes slowly decaying oscillations of the order parameter amplitude. We demonstrate that in superconductors with a built-in spin-splitting field the Higgs mode is strongly coupled to the spin degrees of freedom, allowing for the generation of time-dependent spin currents. Converting such spin currents to electric signals by spin-filtering elements provides a tool for the second-harmonic generation and the electrical detection of the Higgs mode generated by the external irradiation. The nonadiabatic spin torques generated by these spin currents allow for the magnetic detection of the Higgs mode by measuring the precession of the magnetic moment…

research product

Electron-phonon interaction in flat-band superconductivity

Parhaiten tunnettu suprajohtavuuden syntymekanismi perustuu fononien välittämään vetovoimaan elektronien välillä. Tässä tutkielmassa tutkin fononien välittämää suprajohtavuutta systeemeissä, jossa elektronivyöt ovat tasomaisia. Tasovyöllä elektronien dispersio on erittäin heikko, jolloin tilatiheys on tavanomaista suurempi. Tämän takia suprajohtavuus tasovyöllä on tavanomaista voimakkaampi silloin kun elektronien välinen vetovoima on heikko. Eliashbergin teoria on elektroni–fononi-suprajohtavuuden teoria, joka ottaa luonnollisella tavalla fononien äärellisen nopeuden huomioon elektronien välisessä vuorovaikutuksessa. Pohjustuksena tasovyösuprajohtavuuteen perehdyn Eliashbergin teoriaan ensi…

research product

Giant enhancement to spin battery effect in superconductor/ferromagnetic insulator systems

We develop a theory of the spin battery effect in superconductor/ferromagnetic insulator (SC/FI) systems taking into account the magnetic proximity effect. We demonstrate that the spin-energy mixing enabled by the superconductivity leads to the enhancement of spin accumulation by several orders of magnitude relative to the normal state. This finding can explain the recently observed giant inverse spin Hall effect generated by thermal magnons in the SC/FI system. We suggest a nonlocal electrical detection scheme which can directly probe the spin accumulation driven by the magnetization dynamics. We predict a giant Seebeck effect converting the magnon temperature bias into the nonlocal voltag…

research product

Clauser-Horne-Shimony-Holt Bell inequality test in an optomechanical device

We propose here a scheme, based on the measurement of quadrature phase coherence, aimed at testing the Clauser-Horne-Shimony-Holt Bell inequality in an optomechanical setting. Our setup is constituted by two optical cavities dispersively coupled to a common mechanical resonator. We show that it is possible to generate EPR-like correlations between the quadratures of the output fields of the two cavities, and, depending on the system parameters, to observe the violation of the Clauser-Horne-Shimony-Holt inequality.

research product

Mean-field theory for superconductivity in twisted bilayer graphene

Recent experiments show how a bilayer graphene twisted around a certain magic angle becomes superconducting as it is doped into a region with approximate flat bands. We investigate the mean-field $s$-wave superconducting state in such a system and show how the state evolves as the twist angle is tuned, and as a function of the doping level. We argue that part of the experimental findings could well be understood to result from an attractive electron--electron interaction mediated by electron--phonon coupling, but the flat-band nature of the excitation spectrum makes also superconductivity quite unusual. For example, as the flat-band states are highly localized around certain spots in the st…

research product

Coupling the Higgs mode and ferromagnetic resonance in spin-split superconductors with Rashba spin-orbit coupling

We show that the Higgs mode of superconductors can couple with spin dynamics in the presence of a static spin-splitting field and Rashba spin-orbit coupling. The Higgs-spin coupling dramatically modifies the spin susceptibility near the superconducting critical temperature and consequently enhances the spin pumping effect in a ferromagnetic insulator/superconductor bilayer system. We show that this effect can be detected by measuring the magnon transmission rate and the magnon-induced voltage generated by the inverse spin Hall effect.

research product

Nonlinear spin torque, pumping, and cooling in superconductor/ferromagnet systems

We study the effects of the coupling between magnetization dynamics and the electronic degrees of freedom in a heterostructure of a metallic nanomagnet with dynamic magnetization coupled with a superconductor containing a steady spin-splitting field. We predict how this system exhibits a non-linear spin torque, which can be driven either with a temperature difference or a voltage across the interface. We generalize this notion to arbitrary magnetization precession by deriving a Keldysh action for the interface, describing the coupled charge, heat and spin transport in the presence of a precessing magnetization. We characterize the effect of superconductivity on the precession damping and th…

research product

Dynamics of Two Ferromagnetic Insulators Coupled by Superconducting Spin Current.

A conventional superconductor sandwiched between two ferromagnets can maintain coherent equilibrium spin current. This spin supercurrent results from the rotation of odd-frequency spin correlations induced in the superconductor by the magnetic proximity effect. In the absence of intrinsic magnetization, the superconductor cannot maintain multiple rotations of the triplet component but instead provides a Josephson type weak link for the spin supercurrent. We determine the analog of the current-phase relation in various circumstances and show how it can be accessed in experiments on dynamic magnetization. In particular, concentrating on the magnetic hysteresis and the ferromagnetic resonance …

research product

Thermoelectric Radiation Detector Based on Superconductor-Ferromagnet Systems

We suggest an ultrasensitive detector of electromagnetic fields exploiting the giant thermoelectric effect recently found in superconductor-ferromagnet hybrid structures. Compared with other types of superconducting detectors where the detected signal is based on variations of the detector impedance, the thermoelectric detector has the advantage of requiring no external driving fields. This is especially relevant in multipixel detectors, where the number of bias lines and the heating induced by them are an issue. We propose different material combinations to implement the detector and provide a detailed analysis of its sensitivity and speed. In particular, we perform a proper noise analysis…

research product

Two topologically distinct Dirac-line semimetal phases and topological phase transitions in rhombohedrally stacked honeycomb lattices

Three-dimensional topological semimetals can support band crossings along one-dimensional curves in the momentum space (nodal lines or Dirac lines) protected by structural symmetries and topology. We consider rhombohedrally (ABC) stacked honeycomb lattices supporting Dirac lines protected by time-reversal, inversion and spin rotation symmetries. For typical band structure parameters there exists a pair of nodal lines in the momentum space extending through the whole Brillouin zone in the stacking direction. We show that these Dirac lines are topologically distinct from the usual Dirac lines which form closed loops inside the Brillouin zone. In particular, an energy gap can be opened only by…

research product