0000000000072025
AUTHOR
G. Lullo
Characterization of inductors in partial saturation for SMPS applications
The exploitation of partially saturated inductors in Switching Mode Power Supply (SMPS) is a key strategy for reducing the size of SMPS and increasing their power density [1]. However an accurate characterization and modellization of each inductor is needed for a correct design and control of the SMPS [2]. Most of inductors' datasheets only indicate the nominal inductance at low current. Anyway, when the inductor is subjected to a higher current, the value of the inductance is lessened. Moreover, inductance meters often actuate their measurements at no or moderate DC bias. In this work we describe the realization of an automated test bench (Fig. 1) for characterizing an inductor under varia…
Resistive switching of anodic TiO2-based Memristors
In recent years, memristors have attracted great attention owing to their simple fabrication process, high scalability, good compatibility with the CMOS technology, high switching speed, low power consumption and low cost for next-generation non-volatile memory technology [1]. The basic cell structure of a memristor is an insulator sandwiched between two metal electrodes. Among the materials being studied for memristors fabrication, binary metal oxides, such as TiO2, are most favourable because of their simple constituents, compatible with CMOS processes, and resistive to thermal/chemical damages. Anodizing is a an electrochemical low cost process carried out at room temperature to grow oxi…
Planar Technology for NDT-Ge X-Ray Microcalorimeters: Absorber Fabrication
We have investigated the electroplating process to deposit thick uniform films of tin on a Ge wafer coated with Spin‐On Glass, in order to fabricate the absorbers for Ge microcalorimeter arrays. Here we discuss some technological details and propose two alternative metal bilayer to be used as seed for the electroplating.
Design and realization of a DC/DC converter with a partially saturated inductor
DC/DC converters, in some types of applications such as portable equipments, can require more space than it is actually available. The inductor is typically the most bulky element and the possibility to reduce its size can save up to 50% of the converter volume and area [1][2], thus increasing the power density. This reduction, however, comes with nonlinear effects caused by the saturation of the ferromagnetic core. An appropriate modelling of the inductor and of the converter circuit is needed for guaranteeing a good output power quality (Fig. 1). A Boost converter with an inductor in the partially saturated roll-off operating zone was designed and realized to study the behaviour of DC/DC …