0000000000072315
AUTHOR
Pierre-ambroise Lacourt
Real Time Measurements of Spectral Instabilities in Ultrafast Fibre Laser Systems
International audience;
Stealth dicing with ultrafast Bessel beams with engineered transverse profiles
International audience; We investigate high-speed glass cleaving with ultrafast laser beams with engineered transverse intensity profile. We achieve accuracy of ~ 1 µm at 25 mm/s and drastically enhance cleavability compared to standard Bessel beams.
Real-Time Measurements of Ultrafast Instabilities in Nonlinear Fiber Optics: Recent Advances
Recent years have seen renewed interest in the study of nonlinear fibre laser and propagation dynamics through the use of real-time measurement techniques for non-repetitive ultrafast optical signals. In this paper we review our recent work in this field using dispersive Fourier Transform and Time Lens techniques.
Micron-precision in cleaving glass using ultrafast bessel beams with engineered transverse beam shapes
International audience; Ultrafast lasers in association to beam shaping have shown to be excellent candidates for transparent material processing. Non-diffractive solutions such as Bessel beams allows for precise energy deposition since they are robust to undesired non-linear effects and as they do not distort along the propagation. This offers important opportunities in laser-assisted cleaving, i.e. mechanical medium separation after single-pass laser illumination. Here we break the Bessel beam cylindrical symmetry using a novel anisotropic and non-diffractive solutions to investigate both lateral intensity contributions on material response and induced processing effect for non-cylindrica…
Deviation from threshold model in ultrafast laser ablation of graphene at sub-micron scale
International audience; We investigate a method to measure ultrafast laser ablation threshold with respect to spot size. We use structured complex beams to generate a pattern of craters in CVD graphene with a single laser pulse. A direct comparison between beam profile and SEM characterization allows us to determine the dependence of ablation probability on spot-size, for crater diameters ranging between 700 nm and 2.5 μm. We report a drastic decrease of ablation probability when the crater diameter is below 1 μm which we interpret in terms of free-carrier diffusion.