0000000000073789

AUTHOR

S. Kopecky

Direct mass measurements of neutron-rich zirconium isotopes up toZr104

Atomic masses of radioactive zirconium isotopes from {sup 96}Zr to {sup 104}Zr have been measured with a relative accuracy of {<=}5x10{sup -7} using a Penning trap coupled to the ion guide isotope separator on-line system. The obtained two-neutron separation energies show strong local correlation in relation to the shape change and shape coexistence between N=58 and 60.

research product

Calibration of a neutron time-of-flight multidetector system for an intensity interferometry experiment

We present the details of an experiment on light particle interferometry. In particular, we focus on a time-of-flight technique which uses a cyclotron RF signal as a start and a liquid scintillator time signal as a stop, to measure neutron energy in the range of En approximate to 1.8-150 MeV. This dynamic range (up to 300 ns) is much larger than the beam bunch separation (54 ns) of the AGOR cyclotron (KVI). However, the problem of a short burst period is overcome by using the time information obtained from a fast projectile fragment phoswich detector. The complete analysis procedure to extract the final neutron kinetic energy spectra, is discussed. (C) 2003 Elsevier B.V. All rights reserved.

research product

First mass measurement at JYFLTRAP

The first mass measurements at JYFLTRAP facility are reviewed. Those are also first ever direct mass measurements of the heaviest Zr-isotopes. Results are compared to atomic mass evaluation data and the recent calculations. The first TOF-resonances from high-precision trap and an implication to high-precision mass measurements are discussed.

research product

Excited states in 31S studied via beta decay of 31Cl

The beta decay of 31Cl has been studied with a silicon detector array and a HPGe detector at the IGISOL facility. Previously controversial proton peaks have been confirmed to belong to 31Cl and a new proton group with an energy of 762(14) keV has been found. Proton captures to this state at 6921(15) keV in 31S can have an effect on the reaction rate of 30P(p,γ) in ONe novae. Gamma rays of 1249.1(14) keV and 2234.5(8) keV corresponding to the de-excitations of the first two excited states in 31S have been measured. No beta-delayed protons from the IAS have been observed. peerReviewed

research product

Penning trap for isobaric mass separation at IGISOL

Abstract A cylindrical Penning trap has been built at the ion guide isotope separator facility IGISOL of the University of Jyvaskyla. The main goal of the Penning trap application is to purify low-energy radioactive ion beams. The aim is to make isobarically pure beams. The technical description is presented.

research product

First Precision Mass Measurements of Refractory Fission Fragments

Atomic masses of 95-100Sr, 98-105Zr, and [corrected] 102-110Mo and have been measured with a precision of 10 keV employing a Penning trap setup at the IGISOL facility. Masses of 104,105Zr and 109,110Mo are measured for the first time. Our improved results indicate significant deviations from the previously published values deduced from beta end point measurements. The most neutron-rich studied isotopes are found to be significantly less bound (1 MeV) compared to the 2003 atomic mass evaluation. A strong correlation between nuclear deformation and the binding energy is observed in the two-neutron separation energy in all studied isotope chains.

research product

JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification

In this article a comprehensive description and performance of the double Penning-trap setup JYFLTRAP will be detailed. The setup is designed for atomic mass measurements of both radioactive and stable ions and additionally serves as a very high-resolution mass separator. The setup is coupled to the IGISOL facility at the accelerator laboratory of the University of Jyväskylä. The trap has been online since 2003 and it was shut down in the summer of 2010 for relocation to the upgraded IGISOL facility. Numerous atomic mass and decay energy measurements have been performed using the time-of-flight ion-cyclotron resonance technique. The trap has also been used in several decay spectroscopy expe…

research product

JYFLTRAP: a cylindrical Penning trap for isobaric beam purification at IGISOL

Abstract A Penning trap has been installed for isobaric beam purification at the IGISOL-facility at the University of Jyvaskyla. In this paper, the technical details of this new device together with results of the first tests are presented. The mass resolving power, depending on the excitation parameters and the ion species, can be as high as 145 000 and the total transmission has been determined to be 17%. In addition, it is shown that with this experimental setup it is possible to measure atomic masses up to A=120 with accuracies of approximately 50 keV .

research product