Long-lived Humans Have a Unique Plasma Sphingolipidome
A species-specific lipidome profile is an inherent feature linked to longevity in the animal kingdom. However, there is a lack of lipidomic studies on human longevity. Here, we use mass spectrometry-based lipidomics to detect and quantify 151 sphingolipid molecular species and use these to define a phenotype of healthy humans with exceptional life span. Our results demonstrate that this profile specifically comprises a higher content of complex glycosphingolipids (hexosylceramides and gangliosides), and lower levels of ceramide species from the de novo pathway, sphingomyelin and sulfatide; while for ceramide-derived signaling compounds, their content remains unchanged. Our findings suggest …
Methionine transsulfuration pathway is upregulated in long-lived humans.
Available evidences point to methionine metabolism as a key target to study the molecular adaptive mechanisms underlying differences in longevity. The plasma methionine metabolic profile was determined using a LC-MS/MS platform to systematically define specific phenotypic patterns associated with genotypes of human extreme longevity (centenarians). Our findings demonstrate the presence of a specific plasma profile associated with human longevity characterized by an enhanced transsulfuration pathway and tricarboxylic acid (TCA) cycle intermediates, as well as a reduced content of specific amino acids. Furthermore, our work reveals that centenarians maintain a strongly correlated methionine m…