Protection of Azidothymidine-Induced Cardiopathology in Mice by Mildronate, a Mitochondria-Targeted Drug
Azidothymidine, a nucleoside-analogue reverse transcriptase inhibitor (NRTI), is a commonly used antiretroviral drug in AIDS treatment, however its use is limited by severe toxic side effects due to its influence on mitochondria that result in myopathy, particularly affecting the cardiac muscle. We suggest that effective protection of azidothymidine- induced cardiopathology can be expected from drugs that are capable of targeting mitochondria. Therefore the present study in mice was carried out with mildronate, a cardioprotective drug of the aza-butyrobetaine class, which previously has been shown to act as a highly potent protector of mitochondrial processes. In our study, saline (control)…
The gamma(2)-MSH peptide mediates a central analgesic effect via a GABA-ergic mechanism that is independent from activation of melanocortin receptors.
Using the latency for tail-flick after thermal stimulation we have assessed the effects of alpha-, gamma(1)- and gamma(2)-MSH on nociceptive threshold in the mice. Intracisternal injections of gamma(2)-MSH induced a distinct analgesia, while gamma(1)-MSH in the same doses gave only a minor analgesia. Intracisternal alpha-MSH instead gave a short-term hyperalgesia. The effect of gamma(2)-MSH was not blocked by any of the MC(4)/MC(3)receptor antagonist HS014, naloxone or by the prior intracisternal administrations of gamma(1)-MSH. However, the gamma(2)-MSH analgesic response was completely attenuated by treating animals with the GABA(A)antagonist bicuculline. The gamma(2)-MSH analgesic effect…
γ1- and γ2-melanocyte stimulating hormones induce central anxiogenic effects and potentiate ethanol withdrawal responses in the elevated plus-maze test in mice
Little is known about the endogenous functions of gamma1- and gamma2-melanocyte stimulating hormones (gamma1- and gamma2-MSH). Although gamma-MSHs bind to melanocortin receptor subtypes 3 and 4, we have previously shown that these peptides also influence non-melanocortinergic processes, such as dopaminergic and GABAergic. The aim of this study was to determine the effects of gamma1- and gamma2-MSH (at doses 0.3, 1 and 2 nmol/mouse/5 microl) on the anxiety levels in mice in elevated plus maze. Three experimental paradigms were performed to assess the effects of peptides on: a) ethanol withdrawal; b) acute ethanol-induced anxiolytic action; c) peptides per se. We used ethanol as the model sub…
Synthesis and pharmacological activity of silyl isoxazolines 2
Silyl isoxazolines have been synthesized by [2+3] cycloaddition reaction of nitrile oxides to vinyl- and allylsilanes. The addition of 3-pyridylnitrile oxide to 1,3-divinyl-1,1,3,3-tetraphenyldisiloxane affords 1,3-bis{5-[3-(3-pyridyl)isoxazolin-2-yl]}-1,1,3,3-tetraphenyldisiloxane; the latter exists as a mixture of trans- and cis-isomers.The bond angle of the Si–O–Si fragment in thetrans-isomer equals 180(3)° and in the cis-isomer it is 162(3)°.The pharmacological properties of 4-[3-(5-trimethylsilylisoxazolin-2-yl)]pyridinium-chloride have been studied.
Taurine and tauropyrone: Comparative neuropharmacological studies of small doses
Opposite effects of γ1- and γ2-melanocyte stimulating hormone on regulation of the dopaminergic mesolimbic system in rats
By use of the brain microdialysis technique we show that administration of gamma(1)-melanocyte stimulating hormone (gamma(1)-MSH) into the ventral tegmental area of anaesthetized rats causes an increase in the release of extracellular dopamine and its metabolite 3,4-dihydroxyphenylacetic acid in the nucleus accumbens, while gamma(2)-MSH causes the opposite effect. Moreover, gamma(2)-MSH pre-treatment considerably reduced the gamma(1)-MSH-induced effects. Our findings suggest an opposing action of two gamma-MSH-activated pathways on the mesolimbic dopaminergic system, which could be important in the maintenance of a balanced psychoactivation state.
Comparative study of taurine and tauropyrone: GABA receptor binding, mitochondrial processes and behaviour.
Abstract Objectives Taurine, a sulfur-containing amino acid, has high hydrophilicity and is poorly absorbed. Tauropyrone, a taurine-containing 1,4-dihydropyridine derivative, is suggested to have greater activity than taurine owing to improved physicochemical properties that facilitate delivery of the compound to target cells. The aim of this study was to determine whether the 1,4-dihydropyridine moiety in tauropyrone improves the pharmacological efficacy of taurine in vitro and in vivo. Methods The effects of taurine and tauropyrone, as well as of the 1,4-dihydropyridine moiety were compared in in-vitro experiments to determine the binding to GABA receptors and influence on mitochondrial p…
Lunasin-induced behavioural effects in mice: Focus on the dopaminergic system
The present study for the first time is devoted to identify central effects of synthetic lunasin, a 43 amino acid peptide. A markedly expressed neuroleptic/cataleptic effect was observed at low (0.1-10 nmol/mouse) centrally administered doses in male C57Bl/6 mice. Lunasin considerably reduced the amphetamine hyperlocomotion but weakly apomorphine climbing behaviour. No influence on ketamine and bicuculline effects was observed. Binding assay studies demonstrated modest affinity of lunasin for the dopamine D₁ receptor (Ki=60 ± 15 μM). In a functional assay of cAMP accumulation on live cells lunasin antagonised apomorphine effect on D₁ receptor activation (pEC₅₀=6.1 ± 0.3), but had no effect …
Neuroprotective properties of mildronate, a mitochondria-targeted small molecule.
Mildronate, a representative of the aza-butyrobetaine class of drugs with proven cardioprotective efficacy, was recently found to prevent dysfunction of complex I in rat liver mitochondria. The present study demonstrates that mildronate also acts as a neuroprotective agent. In a mouse model of azidothymidine (anti-HIV drug) neurotoxicity, mildronate reduced the azidothymidine-induced alterations in mouse brain tissue: it normalized the increase in caspase-3, cellular apoptosis susceptibility protein (CAS) and iNOS expression assessed by quantitative and semi-quantitative analysis. Mildronate also normalized the changes in cytochrome c oxidase (COX) expression, reduced the expression of glia…
Evaluation of “Stress Relief” Dietary Supplement on Animal Stress Level and Locomotion
Abstract Search of new approaches for harmless, non-medication treatment of body dysfunctions is still on the agenda of vet and human practitioners and researchers as well. This study presents evaluation of the effect of “Stress Relief” dietary supplement (SR) on mice behaviour under different acute short-term stress conditions and treatment duration. Five experiments were performed and in each 40 animals were randomly split into four (I–IV) groups, where I and II — non-stressed mice, III and IV — stressed animals, I and III received water with trace mineral solution (TMS), II and IV received water with SR. As stress factors, forced swimming, rodent predator odour or both together were appl…
Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease
Previously, we have found that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a small molecule with charged nitrogen and oxygen atoms, protects mitochondrial metabolism that is altered by inhibitors of complex I and has neuroprotective effects in an azidothymidine-neurotoxicity mouse model. In the present study, we investigated the effects of mildronate in a rat model of Parkinson’s disease (PD) that was generated via a unilateral intrastriatal injection of the neurotoxin 6-hydroxydopamine (6‑OHDA). We assessed the expression of cell biomarkers that are involved in signaling cascades and provide neural and glial integration: the neuronal marker TH (tyrosine hydroxylase); …
The Fundamental Role of Melanocortins in Brain Processes
The discoveries of the latest ten years have shed new light in understanding the roles of melanocortins and their receptors in brain functions and in the development of different pathologies. Since 1992 when genes encoded melanocortin receptor five subtypes were identified, cloned and characterized, the molecular mechanisms underlying different effects such as skin darkening, behaviour, food intake, anti-inflammatory action, analgesia have been clarified. The contribution of melanocortins and their receptors in the physiological control of organism homeostasis has become as the background for the search of agonists and antagonists of separate receptor subtypes, that can be targeted to the m…
Carnitine congener mildronate protects against stress- and haloperidol-induced impairment in memory and brain protein expression in rats.
The present study investigates the efficacy of mildronate, a carnitine congener, to protect stress and haloperidol-induced impairment of memory in rats and the expression of brain protein biomarkers involved in synaptic plasticity, such as brain-derived neurotrophic factor (BDNF), acetylcholine esterase and glutamate decarboxylase 67 (GAD67). Two amnesia models were used: 2h immobilization stress and 3-week haloperidol treatment. Stress caused memory impairment in the passive avoidance test and induced a significant 2-fold BDNF elevation in hippocampal and striatal tissues that was completely inhibited by mildronate. Mildronate decreased the level of GAD67 (but not acetylcholine esterase) e…
Search for Stroke-Protecting Agents in Endothelin-1-Induced Ischemic Stroke Model in Rats
Background and Objective. Ischemic stroke may initiate a reperfusion injury leading to brain damage cascades where inflammatory mechanisms play a major role. Therefore, the necessity for the novel stroke-protecting agents whose the mechanism of action is focused on their anti-inflammatory potency is still on the agenda for drug designers. Our previous studies demonstrated that cerebrocrast (a 1,4-dihydropyridine derivative) and mildronate (a representative of the aza-butyrobetaine class) possessed considerable anti-inflammatory and neuroprotective properties in different in vitro and in vivo model systems. The present study investigated their stroke-protecting ability in an endothelin-1 (ET…
Distinct influence of atypical 1,4-dihydropyridine compounds in azidothymidine-induced neuro- and cardiotoxicity in mice ex vivo.
This study demonstrates the effective protection by compounds of atypical 1,4-dihydropyridine (DHP) series cerebrocrast, glutapyrone and tauropyrone against neuro- and cardiotoxicity caused by the model compound azidothymidine, a well-known mitochondria-compromising anti-HIV drug. In previous in vitro experiments, we have demonstrated distinct effects of these DHP compounds to influence mitochondrial functioning. In the present in vivo experiments, DHP compounds were administered intraperitoneally in mice daily for 2 weeks, per se and in combinations with azidothymidine at doses: azidothymidine 50 mg/kg; cerebrocrast 0.1 mg/kg; glutapyrone 1 mg/kg; and tauropyrone 1 mg/kg. At the end of the…
Mildronate and its neuroregulatory mechanisms: targeting the mitochondria, neuroinflammation, and protein expression.
This review for the first time summarizes the data obtained in the neuropharmacological studies of mildronate, a drug previously known as a cardioprotective agent. In different animal models of neurotoxicity and neurodegenerative diseases, we demonstrated its neuroprotecting activity. By the use of immunohistochemical methods and Western blot analysis, as well as some selected behavioral tests, the new mechanisms of mildronate have been demonstrated: a regulatory effect on mitochondrial processes and on the expression of nerve cell proteins, which are involved in cell survival, functioning, and inflammation processes. Particular attention is paid to the capability of mildronate to stimulate…
Characterization of the transporterB0AT3 (Slc6a17) in the rodent central nervous system.
Abstract Background The vesicular B0AT3 transporter (SLC6A17), one of the members of the SLC6 family, is a transporter for neutral amino acids and is exclusively expressed in brain. Here we provide a comprehensive expression profile of B0AT3 in mouse brain using in situ hybridization and immunohistochemistry. Results We confirmed previous expression data from rat brain and used a novel custom made antibody to obtain detailed co-labelling with several cell type specific markers. B0AT3 was highly expressed in both inhibitory and excitatory neurons. The B0AT3 expression was highly overlapping with those of vesicular glutamate transporter 2 (VGLUT2) and vesicular glutamate transporter 1 (VGLUT1…