0000000000075490
AUTHOR
Joaquín Tárraga
A parallel and sensitive software tool for methylation analysis on multicore platforms.
Abstract Motivation: DNA methylation analysis suffers from very long processing time, as the advent of Next-Generation Sequencers has shifted the bottleneck of genomic studies from the sequencers that obtain the DNA samples to the software that performs the analysis of these samples. The existing software for methylation analysis does not seem to scale efficiently neither with the size of the dataset nor with the length of the reads to be analyzed. As it is expected that the sequencers will provide longer and longer reads in the near future, efficient and scalable methylation software should be developed. Results: We present a new software tool, called HPG-Methyl, which efficiently maps bis…
VISMapper: ultra-fast exhaustive cartography of viral insertion sites for gene therapy
The possibility of integrating viral vectors to become a persistent part of the host genome makes them a crucial element of clinical gene therapy. However, viral integration has associated risks, such as the unintentional activation of oncogenes that can result in cancer. Therefore, the analysis of integration sites of retroviral vectors is a crucial step in developing safer vectors for therapeutic use. Here we present VISMapper, a vector integration site analysis web server, to analyze next-generation sequencing data for retroviral vector integration sites. VISMapper can be found at: http://vismapper.babelomics.org . Because it uses novel mapping algorithms VISMapper is remarkably faster t…
HPG pore: an efficient and scalable framework for nanopore sequencing data.
The use of nanopore technologies is expected to spread in the future because they are portable and can sequence long fragments of DNA molecules without prior amplification. The first nanopore sequencer available, the MinION™ from Oxford Nanopore Technologies, is a USB-connected, portable device that allows real-time DNA analysis. In addition, other new instruments are expected to be released soon, which promise to outperform the current short-read technologies in terms of throughput. Despite the flood of data expected from this technology, the data analysis solutions currently available are only designed to manage small projects and are not scalable. Here we present HPG Pore, a toolkit for …
Acceleration of short and long DNA read mapping without loss of accuracy using suffix array
HPG Aligner applies suffix arrays for DNA read mapping. This implementation produces a highly sensitive and extremely fast mapping of DNA reads that scales up almost linearly with read length. The approach presented here is faster (over 20 for long reads) and more sensitive (over 98% in a wide range of read lengths) than the current state-of-the-art mappers. HPG Aligner is not only an optimal alternative for current sequencers but also the only solution available to cope with longer reads and growing throughputs produced by forthcoming sequencing technologies.
A new parallel pipeline for DNA methylation analysis of long reads datasets
Background DNA methylation is an important mechanism of epigenetic regulation in development and disease. New generation sequencers allow genome-wide measurements of the methylation status by reading short stretches of the DNA sequence (Methyl-seq). Several software tools for methylation analysis have been proposed over recent years. However, the current trend is that the new sequencers and the ones expected for an upcoming future yield sequences of increasing length, making these software tools inefficient and obsolete. Results In this paper, we propose a new software based on a strategy for methylation analysis of Methyl-seq sequencing data that requires much shorter execution times while…
Additional file 1 of A new parallel pipeline for DNA methylation analysis of long reads datasets
Text document containing an example of the command launched to execute each of the tools. (TXT 2 kb)