0000000000075534

AUTHOR

Daniel Von Der Heiden

Asymmetric [N–I–N]+halonium complexes in solution?

Assessment of the solution equilibria of [bis(pyridine)iodine(I)]+ complexes by ESI-MS and NMR reveals the preference of iodine(I) to form complexes with a more basic pyridine. Mixtures of symmetric [bis(pyridine)iodine(I)]+ complexes undergo statistical ligand exchange, with a predominant entropic driving force favoring asymmetric systems. The influence of ligand basicity, concentration, temperature, and ligand composition is evaluated. Our findings are expected to facilitate the investigations, and the supramolecular and synthetic applications of halonium ions’ halogen bonds. peerReviewed

research product

Secoiridoids and Iridoids from Morinda asteroscepa

The new 2,3-secoiridoids morisecoiridoic acids A (1) and B (2), the new iridoid 8-acetoxyepishanzilactone (3), and four additional known iridoids (4–7) were isolated from the leaf and stem bark methanol extracts of Morinda asteroscepa using chromatographic methods. The structure of shanzilactone (4) was revised. The purified metabolites were identified using NMR spectroscopic and mass spectrometric techniques, with the absolute configuration of 1 having been established by single-crystal X-ray diffraction analysis. The crude leaf extract (10 μg/mL) and compounds 1–3 and 5 (10 μM) showed mild antiplasmodial activities against the chloroquine-sensitive malaria parasite Plasmodium falciparum (…

research product

CCDC 1963302: Experimental Crystal Structure Determination

Related Article: Linda Zandi, Marco Makungu, Joan J. E. Munissi, Sandra Duffy, Rakesh Puttreddy, Daniel von der Heiden, Kari Rissanen, Vicky M. Avery, Stephen S. Nyandoro, Máté Erdélyi|2020|J.Nat.Prod.|83|2641|doi:10.1021/acs.jnatprod.0c00447

research product