Modeling multipartite virus evolution: the genome formula facilitates rapid adaptation to heterogeneous environments
Multipartite viruses have two or more genome segments, and package different segments into different particle types. Although multipartition is thought to have a cost for virus transmission, its benefits are not clear. Recent experimental work has shown that the equilibrium frequency of viral genome segments, the setpoint genome formula (SGF), can be unbalanced and host-species dependent. These observations have reinvigorated the hypothesis that changes in genome-segment frequencies can lead to changes in virus-gene expression that might be adaptive. Here we explore this hypothesis by developing models of bipartite virus infection, leading to a threefold contribution. First, we show that th…
Five Challenges in the Field of Viral Diversity and Evolution
Viral diversity and evolution play a central role in processes such as disease emergence, vaccine failure, drug resistance, and virulence. However, significant challenges remain to better understand and manage these processes. Here, we discuss five of these challenges. These include improving our ability to predict viral evolution, developing more relevant experimental evolutionary systems, integrating viral dynamics and evolution at different scales, more thoroughly characterizing the virosphere, and deepening our understanding of virus-virus interactions. Intensifying future research on these areas should improve our ability to combat viral diseases, as well as to more efficiently use vir…