0000000000075779

AUTHOR

Sören Schlichting

showing 6 related works from this author

Hot spots and gluon field fluctuations as causes of eccentricity in small systems

2021

We calculate eccentricities in high energy proton-nucleus collisions, by calculating correlation functions of the energy density field of the Glasma immediately after the collision event at proper time tau = 0. We separately consider the effects of color charge and geometrical hot spot fluctuations, analytically performing the averages over both in a dilute-dense limit. We show that geometric fluctuations of hot spots inside the proton are the dominant source of eccentricity whereas color charge fluctuations only give a negligible correction. The size and number of hot spots are the most important parameters characterizing the eccentricities.

Nuclear TheoryField (physics)ProtonAZIMUTHAL ANISOTROPIESFLOWmedia_common.quotation_subjectFOS: Physical sciencesHot spot (veterinary medicine)hiukkasfysiikka114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesProper timeEccentricity (behavior)LONG-RANGEHARMONICSNuclear Experiment010306 general physicsPLUS PB COLLISIONSGluon fieldmedia_commonPROTON-LEAD COLLISIONSPhysics010308 nuclear & particles physicskvarkki-gluoniplasmaANGULAR-CORRELATIONSComputational physicsHigh Energy Physics - PhenomenologyNEAR-SIDEAstrophysics::Earth and Planetary AstrophysicsHIGH TRANSVERSE-MOMENTUMPPBEvent (particle physics)Color chargePhysical Review D
researchProduct

Chirality transfer and chiral turbulence in gauge theories

2020

Chirality transfer between fermions and gauge fields plays a crucial role for understanding the dynamics of anomalous transport phenomena such as the Chiral Magnetic Effect. In this proceeding we present a first principles study of these processes based on classical-statistical real-time lattice simulations of strongly coupled QED $(e^2N_f=64)$. Our simulations demonstrate that a chirality imbalance in the fermion sector triggers chiral plasma instabilities in the gauge field sector, which ultimately lead to the generation of long range helical magnetic fields via a self-similar turbulent cascade of the magnetic helicity.

High Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::Latticechiral plasma instabilitiesFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Magnetic helicity0103 physical sciencesGauge theory010306 general physicsPhysicsChirality transferchiral turbulence010308 nuclear & particles physicsmagnetogensisHigh Energy Physics::PhenomenologyFermionPlasmaMagnetic fieldHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)CascadeQuantum electrodynamicsChirality (chemistry)Transport phenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Rapidity dependence of initial state geometry and momentum correlations in p+Pb collisions

2022

Event geometry and initial state correlations have been invoked as possible explanations of long range azimuthal correlations observed in high multiplicity p+p and p+Pb collisions. We study the rapidity dependence of initial state momentum correlations and event-by-event geometry in $\sqrt{s}=5.02~\rm{TeV}$ p+Pb collisions within the 3+1D IP-Glasma model~\cite{Schenke:2016ksl}, where the longitudinal structure is governed by JIMWLK rapidity evolution of the incoming nuclear gluon distributions. We find that the event geometry is correlated across large rapidity intervals whereas initial state momentum correlations are relatively short range in rapidity. Based on our results, we discuss impl…

Nuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Nuclear Theorykvarkki-gluoniplasmaFOS: Physical scienceshiukkasfysiikka
researchProduct

Linearly polarized gluons and axial charge fluctuations in the glasma

2018

We calculate of the one- and two-point correlation functions of the energy density and the divergence of the Chern-Simons current in the nonequilibrium Glasma state formed in a high-energy nuclear collision. We show that the latter depends on the difference of the total and linearly polarized gluon transverse momentum distributions. Since the divergence of the Chern-Simons current provides the source of axial charge, we infer information about the statistical properties of axial charge production at early times. We further develop a simple phenomenological model to characterize axial charge distributions in terms of distributions of the energy density.

Nuclear Theoryquark-gluon plasmaField (physics)FLOWFOS: Physical sciencesparticle productionNon-equilibrium thermodynamicsHEAVY-ION COLLISIONS114 Physical sciences01 natural sciencesHYDRODYNAMICSNuclear Theory (nucl-th)hiukkasetHigh Energy Physics - Phenomenology (hep-ph)nuclear physicsCONDENSATE0103 physical sciencesPhenomenological modelFIELD010306 general physicsDivergence (statistics)plasmaPhysicsta114ionitkvarkit010308 nuclear & particles physicsLinear polarizationkvarkki-gluoniplasmaCharge densityCharge (physics)EVOLUTIONGluonHigh Energy Physics - PhenomenologyDENSITYQuantum electrodynamicsENERGY NUCLEAR COLLISIONSAtomic physicsydinfysiikkarelativistic heavy-ion collisionsPhysical Review
researchProduct

Predictions for cold nuclear matter effects in p+Pb collisions at s N N = 8.16 TeV

Nuclear Physics A
researchProduct

Predictions for cold nuclear matter effects in p+Pb collisions at sNN=8.16 TeV

2018

Predictions for cold nuclear matter effects on charged hadrons, identified light hadrons, quarkonium and heavy flavor hadrons, Drell–Yan dileptons, jets, photons, gauge bosons and top quark pairs produced in p +Pb collisions at sNN=8.16 TeV are compiled and, where possible, compared to each other. Predictions of the normalized ratios of p +Pb to p+p cross sections are also presented for most of the observables, providing new insights into the expected role of cold nuclear matter effects. In particular, the role of nuclear parton distribution functions on particle production can now be probed over a wider range of phase space than ever before.

PhysicsNuclear and High Energy PhysicsGauge bosonTop quark010308 nuclear & particles physicsNuclear TheoryHigh Energy Physics::PhenomenologyHadronDrell–Yan processPerturbative QCDPartonNuclear matterQuarkonium01 natural sciencesNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNuclear Physics A
researchProduct