6533b7d9fe1ef96bd126ce36
RESEARCH PRODUCT
Chirality transfer and chiral turbulence in gauge theories
Niklas MuellerSayantan SharmaSören SchlichtingMark MaceMark Macesubject
High Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::Latticechiral plasma instabilitiesFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Magnetic helicity0103 physical sciencesGauge theory010306 general physicsPhysicsChirality transferchiral turbulence010308 nuclear & particles physicsmagnetogensisHigh Energy Physics::PhenomenologyFermionPlasmaMagnetic fieldHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)CascadeQuantum electrodynamicsChirality (chemistry)Transport phenomenaAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
Chirality transfer between fermions and gauge fields plays a crucial role for understanding the dynamics of anomalous transport phenomena such as the Chiral Magnetic Effect. In this proceeding we present a first principles study of these processes based on classical-statistical real-time lattice simulations of strongly coupled QED $(e^2N_f=64)$. Our simulations demonstrate that a chirality imbalance in the fermion sector triggers chiral plasma instabilities in the gauge field sector, which ultimately lead to the generation of long range helical magnetic fields via a self-similar turbulent cascade of the magnetic helicity.
year | journal | country | edition | language |
---|---|---|---|---|
2020-03-02 |