0000000000343995
AUTHOR
Mark Mace
Chirality transfer and chiral turbulence in gauge theories
Chirality transfer between fermions and gauge fields plays a crucial role for understanding the dynamics of anomalous transport phenomena such as the Chiral Magnetic Effect. In this proceeding we present a first principles study of these processes based on classical-statistical real-time lattice simulations of strongly coupled QED $(e^2N_f=64)$. Our simulations demonstrate that a chirality imbalance in the fermion sector triggers chiral plasma instabilities in the gauge field sector, which ultimately lead to the generation of long range helical magnetic fields via a self-similar turbulent cascade of the magnetic helicity.
Magnetic fields in heavy ion collisions: flow and charge transport
At the earliest times after a heavy-ion collision, the magnetic field created by the spectator nucleons will generate an extremely strong, albeit rapidly decreasing in time, magnetic field. The impact of this magnetic field may have detectable consequences, and is believed to drive anomalous transport effects like the Chiral Magnetic Effect (CME). We detail an exploratory study on the effects of a dynamical magnetic field on the hydrodynamic medium created in the collisions of two ultrarelativistic heavy-ions, using the framework of numerical ideal MagnetoHydroDynamics (MHD) with the ECHO-QGP code. In this study, we consider a magnetic field captured in a conducting medium, where the conduc…
Corrigendum to “Systematics of azimuthal anisotropy harmonics in proton–nucleus collisions at the LHC from the Color Glass Condensate” [Phys. Lett. B 788 (2019) 161–165]
QCD Challenges from pp to A-A Collisions
This paper is a write-up of the ideas that were presented, developed and discussed at the third International Workshop on QCD Challenges from pp to A-A, which took place in August 2019 in Lund, Sweden. The goal of the workshop was to focus on some of the open questions in the field and try to come up with concrete suggestions for how to make progress on both the experimental and theoretical sides. The paper gives a brief introduction to each topic and then summarizes the primary results.
Initial state description of azimuthally collimated long range correlations in ultrarelativistic light-heavy ion collisions
It was argued in arXiv:1805.09342 and arXiv:1807.00825 that the systematics of the azimuthal anisotropy coefficients $v_{2,3}$ measured in ultrarelativistic light-heavy ion collisions at RHIC and the LHC can be described in an initial state dilute-dense Color Glass Condensate (CGC) framework. We elaborate here on the discussion in these papers and provide further novel results that strengthen their conclusions. The underlying mathematical framework and numerical techniques employed are very similar to those in the CGC based IP-Glasma model used previously as initial conditions for heavy-ion collisions. The uncertainties in theory/data comparisons for small systems are discussed, with unknow…
Chiral Instabilities and the Onset of Chiral Turbulence in QED Plasmas
We present a first principles study of chiral plasma instabilities and the onset of chiral turbulence in QED plasmas far from equilibrium. By performing classical-statistical lattice simulations of the microscopic theory, we show that the generation of strong helical magnetic fields from a helicity imbalance in the fermion sector proceeds via three distinct phases. During the initial linear instability regime the helicity imbalance of the fermion sector causes an exponential growth(damping) of magnetic field modes with right(left) handed polarization, for which we extract the characteristic growth (damping) rates. Secondary growth of unstable modes accelerates the helicity transfer from fer…
Gauge-invariant condensation in the nonequilibrium quark-gluon plasma
The large density of gluons, which is present shortly after a nuclear collision at very high energies, can lead to the formation of a condensate. We identify a gauge-invariant order parameter for condensation based on elementary non-perturbative excitations of the plasma, which are described by spatial Wilson loops. Using real-time lattice simulations, we demonstrate that a self-similar transport process towards low momenta builds up a macroscopic zero mode. Our findings reveal intriguing similarities to recent discoveries of condensation phenomena out of equilibrium in table-top experiments with ultracold Bose gases.