0000000000076217

AUTHOR

Dongbin Shin

Time-based Chern number in periodically driven systems in the adiabatic limit

To define the topology of driven systems, recent works have proposed synthetic dimensions as a way to uncover the underlying parameter space of topological invariants. Using time as a synthetic dimension, together with a momentum dimension, gives access to a synthetic two-dimensional (2D) Chern number. It is, however, still unclear how the synthetic 2D Chern number is related to the Chern number that is defined from a parametric variable that evolves with time. Here we show that in periodically driven systems in the adiabatic limit, the synthetic 2D Chern number is a multiple of the Chern number defined from the parametric variable. The synthetic 2D Chern number can thus be engineered via h…

research product

Simulating Terahertz Field-Induced Ferroelectricity in Quantum Paraelectric SrTiO3

Recent experiments have demonstrated that light can induce a transition from the quantum paraelectric to the ferroelectric phase of SrTiO3. Here, we investigate this terahertz field-induced ferroelectric phase transition by solving the time-dependent lattice Schrödinger equation based on first-principles calculations. We find that ferroelectricity originates from a light-induced mixing between ground and first excited lattice states in the quantum paraelectric phase. In agreement with the experimental findings, our study shows that the nonoscillatory second harmonic generation signal can be evidence of ferroelectricity in SrTiO3. We reveal the microscopic details of this exotic phase transi…

research product

Phonon-driven spin-Floquet magneto-valleytronics in MoS2

AbstractTwo-dimensional materials equipped with strong spin–orbit coupling can display novel electronic, spintronic, and topological properties originating from the breaking of time or inversion symmetry. A lot of interest has focused on the valley degrees of freedom that can be used to encode binary information. By performing ab initio time-dependent density functional simulation on MoS2, here we show that the spin is not only locked to the valley momenta but strongly coupled to the optical E″ phonon that lifts the lattice mirror symmetry. Once the phonon is pumped so as to break time-reversal symmetry, the resulting Floquet spectra of the phonon-dressed spins carry a net out-of-plane magn…

research product

The Ferroelectric Photo-Groundstate of SrTiO$_3$: Cavity Materials Engineering

Significance Controlling collective phenomena in quantum materials is a promising route toward engineering material properties on demand. Strong THz lasers have been successful at inducing ferroelectricity in S r T i O 3 . Here we demonstrate, from atomistic calculations, that cavity quantum vacuum fluctuations induce a change in the collective phase of S r T i O 3 in the strong light–matter coupling regime. Under these conditions, the ferroelectric phase is stabilized as the ground state, instead of the quantum paraelectric one. We conceptualize this light–matter hybrid state as a material photo ground state: Fundamental properties such as crystal structure, phonon frequencies, and the col…

research product

The quantum paraelectric phase of SrTiO$_3$ from first principles

We demonstrate how the quantum paraelectric ground state of SrTiO$_3$ can be accessed via a microscopic $ab~initio$ approach based on density functional theory. At low temperature the quantum fluctuations are strong enough to stabilize the paraelectric phase even though a classical description would predict a ferroelectric phase. We find that accounting for quantum fluctuations of the lattice and for the strong coupling between the ferroelectric soft mode and lattice elongation is necessary to achieve quantitative agreement with experimental frequency of the ferroelectric soft mode. The temperature dependent properties in SrTiO$_3$ are also well captured by the present microscopic framework.

research product

Dynamical amplification of electric polarization through nonlinear phononics in 2D SnTe

Ultrafast optical control of ferroelectricity using intense terahertz fields has attracted significant interest. Here we show that the nonlinear interactions between two optical phonons in SnTe, a two-dimensional in-plane ferroelectric material, enables a dynamical amplification of the electric polarization within subpicoseconds time domain. Our first-principles time-dependent simulations show that the infrared-active out-of-plane phonon mode, pumped to nonlinear regimes, spontaneously generates in-plane motions, leading to rectified oscillations in the in-plane electric polarization. We suggest that this dynamical control of ferroelectric material, by nonlinear phonon excitation, can be ut…

research product

Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states

Materials can be classified by the topological character of their electronic structure and, in this perspective, global attributes immune to local deformations have been discussed in terms of Berry curvature and Chern numbers. Except for instructional simple models, linear response theories have been ubiquitously employed in calculations of topological properties of real materials. Here we propose a completely different and versatile approach to get the topological characteristics of materials by calculating physical observables from the real-time evolving Bloch states: the cell-averaged current density reveals the anomalous velocities whose integration leads to the conductivity quantum. Re…

research product

Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers

In symmetry-broken crystalline solids, pole structures of Berry curvature (BC) can emerge, and they have been utilized as a versatile tool for controlling transport properties. For example, the monopole component of the BC is induced by the time-reversal symmetry breaking, and the BC dipole arises from a lack of inversion symmetry, leading to the anomalous Hall and nonlinear Hall effects, respectively. Based on first-principles calculations, we show that the ferroelectricity in a tin telluride monolayer produces a unique BC distribution, which offers charge- and spin-controllable photocurrents. Even with the sizable band gap, the ferroelectrically driven BC dipole is comparable to those of …

research product