6533b823fe1ef96bd127f6fa

RESEARCH PRODUCT

Phonon-driven spin-Floquet magneto-valleytronics in MoS2

Noejung ParkNoejung ParkDongbin ShinHannes HübenerHosub JinUmberto De GiovanniniAngel RubioAngel Rubio

subject

Floquet theoryFloquet theoryPhononSciencePoint reflectionGeneral Physics and Astronomy02 engineering and technology01 natural sciencesSettore FIS/03 - Fisica Della MateriaGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials ScienceMagnetization0103 physical sciencesValleytronicslcsh:Science010306 general physicsPhysicsMultidisciplinaryCondensed matter physicsSpinsSpintronicsQGeneral Chemistry2D materialsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology3. Good healthCondensed Matter::Strongly Correlated Electronslcsh:Q0210 nano-technologyMirror symmetry

description

AbstractTwo-dimensional materials equipped with strong spin–orbit coupling can display novel electronic, spintronic, and topological properties originating from the breaking of time or inversion symmetry. A lot of interest has focused on the valley degrees of freedom that can be used to encode binary information. By performing ab initio time-dependent density functional simulation on MoS2, here we show that the spin is not only locked to the valley momenta but strongly coupled to the optical E″ phonon that lifts the lattice mirror symmetry. Once the phonon is pumped so as to break time-reversal symmetry, the resulting Floquet spectra of the phonon-dressed spins carry a net out-of-plane magnetization (≈0.024μB for single-phonon quantum) even though the original system is non-magnetic. This dichroic magnetic response of the valley states is general for all 2H semiconducting transition-metal dichalcogenides and can be probed and controlled by infrared coherent laser excitation.

10.1038/s41467-018-02918-5http://dx.doi.org/10.1038/s41467-018-02918-5