0000000000538278

AUTHOR

Noejung Park

0000-0002-2359-0635

showing 4 related works from this author

Phonon-driven spin-Floquet magneto-valleytronics in MoS2

2018

AbstractTwo-dimensional materials equipped with strong spin–orbit coupling can display novel electronic, spintronic, and topological properties originating from the breaking of time or inversion symmetry. A lot of interest has focused on the valley degrees of freedom that can be used to encode binary information. By performing ab initio time-dependent density functional simulation on MoS2, here we show that the spin is not only locked to the valley momenta but strongly coupled to the optical E″ phonon that lifts the lattice mirror symmetry. Once the phonon is pumped so as to break time-reversal symmetry, the resulting Floquet spectra of the phonon-dressed spins carry a net out-of-plane magn…

Floquet theoryFloquet theoryPhononSciencePoint reflectionGeneral Physics and Astronomy02 engineering and technology01 natural sciencesSettore FIS/03 - Fisica Della MateriaGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials ScienceMagnetization0103 physical sciencesValleytronicslcsh:Science010306 general physicsPhysicsMultidisciplinaryCondensed matter physicsSpinsSpintronicsQGeneral Chemistry2D materialsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology3. Good healthCondensed Matter::Strongly Correlated Electronslcsh:Q0210 nano-technologyMirror symmetryNature Communications
researchProduct

Dynamical amplification of electric polarization through nonlinear phononics in 2D SnTe

2020

Ultrafast optical control of ferroelectricity using intense terahertz fields has attracted significant interest. Here we show that the nonlinear interactions between two optical phonons in SnTe, a two-dimensional in-plane ferroelectric material, enables a dynamical amplification of the electric polarization within subpicoseconds time domain. Our first-principles time-dependent simulations show that the infrared-active out-of-plane phonon mode, pumped to nonlinear regimes, spontaneously generates in-plane motions, leading to rectified oscillations in the in-plane electric polarization. We suggest that this dynamical control of ferroelectric material, by nonlinear phonon excitation, can be ut…

Terahertz radiationPhononPhysics::Optics02 engineering and technology01 natural sciences7. Clean energySettore FIS/03 - Fisica Della MateriaCondensed Matter::Materials ScienceTDDFT0103 physical sciencesGeneral Materials ScienceTime domain010306 general physicsPhysicsFerroelecrtricityCondensed matter physics021001 nanoscience & nanotechnologyFerroelectricityComputer Science ApplicationsPolarization densityNonlinear systemMechanics of MaterialsModeling and Simulation0210 nano-technologyUltrashort pulseExcitation
researchProduct

Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states

2019

Materials can be classified by the topological character of their electronic structure and, in this perspective, global attributes immune to local deformations have been discussed in terms of Berry curvature and Chern numbers. Except for instructional simple models, linear response theories have been ubiquitously employed in calculations of topological properties of real materials. Here we propose a completely different and versatile approach to get the topological characteristics of materials by calculating physical observables from the real-time evolving Bloch states: the cell-averaged current density reveals the anomalous velocities whose integration leads to the conductivity quantum. Re…

Berry curvatureFOS: Physical sciencesSpin Hall effectquantum spin Hall effect02 engineering and technologyElectronic structure01 natural sciencesQuantumSettore FIS/03 - Fisica Della MateriaTheoretical physicsQuantum spin Hall effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesTime-dependent density functional theory010306 general physicsSpin (physics)QuantumTopological insulatorPhysicstopological insulatorCondensed Matter - Materials ScienceMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsPhysicsTime evolutionMaterials Science (cond-mat.mtrl-sci)Observable021001 nanoscience & nanotechnologytime-dependent density functional theoryTopological insulatorPhysical SciencesBerry connection and curvature0210 nano-technology
researchProduct

Prediction of ferroelectricity-driven Berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers

2019

In symmetry-broken crystalline solids, pole structures of Berry curvature (BC) can emerge, and they have been utilized as a versatile tool for controlling transport properties. For example, the monopole component of the BC is induced by the time-reversal symmetry breaking, and the BC dipole arises from a lack of inversion symmetry, leading to the anomalous Hall and nonlinear Hall effects, respectively. Based on first-principles calculations, we show that the ferroelectricity in a tin telluride monolayer produces a unique BC distribution, which offers charge- and spin-controllable photocurrents. Even with the sizable band gap, the ferroelectrically driven BC dipole is comparable to those of …

0301 basic medicineMaterials scienceBand gapSciencePoint reflectionGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health scienceschemistry.chemical_compoundCondensed Matter::Materials ScienceNanoscience and technologyMonolayerMesoscale and Nanoscale Physics (cond-mat.mes-hall)Symmetry breakinglcsh:ScienceCondensed Matter - Materials ScienceMultidisciplinaryCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsPhysicsQMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectFerroelectricityMaterials scienceTin tellurideDipole030104 developmental biologychemistrylcsh:QBerry connection and curvature0210 nano-technology
researchProduct