0000000000076767

AUTHOR

Juan A. Navarro

showing 7 related works from this author

Altered lipid metabolism in a Drosophila model of Friedreich's ataxia

2010

13 páginas, 5 figuras.-- et al.

MaleAtaxiaCell SurvivalLipid Metabolism Disordersmedicine.disease_causeNervous SystemAnimals Genetically ModifiedLipid peroxidationchemistry.chemical_compoundDownregulation and upregulationIron-Binding ProteinsLipid dropletGeneticsmedicineAnimalsDrosophila ProteinsHumansMolecular BiologyGenetics (clinical)Membrane GlycoproteinsbiologyCélulas glialesFatty AcidsLipid metabolismArticlesGeneral MedicineCell biologyDisease Models AnimalOxidative Stressmedicine.anatomical_structurechemistryBiochemistryFriedreich AtaxiaFrataxinbiology.proteinNeurogliaDrosophilaLipid Peroxidationmedicine.symptomCarrier ProteinsNeurogliaOxidative stress
researchProduct

Disarrangement of Endoplasmic reticulum-mitochondria communication impairs Ca2+ homeostasis in FRDA

2020

AbstractFriedreich ataxia (FRDA) is a neurodegenerative disorder characterized by neuromuscular and neurological manifestations. It is caused by mutations in gene FXN, which results in loss of the mitochondrial protein frataxin. Endoplasmic Reticulum-mitochondria associated membranes (MAMs) are inter-organelle structures involved in the regulation of essential cellular processes, including lipid metabolism and calcium signaling. In the present study, we have analyzed in both, unicellular and multicellular models of FRDA, an analysis of calcium management and of integrity of MAMs. We observed that function of MAMs is compromised in our cellular model of FRDA, which was improved upon treatmen…

0303 health sciencesbiologyEndoplasmic reticulumLipid metabolismMitochondrionbiology.organism_classification3. Good healthCell biology03 medical and health sciences0302 clinical medicineFrataxinbiology.proteinMitochondrial calcium uptakeCellular modelDrosophila melanogaster030217 neurology & neurosurgery030304 developmental biologyCalcium signaling
researchProduct

Overexpression of Human and Fly Frataxins in Drosophila Provokes Deleterious Effects at Biochemical, Physiological and Developmental Levels

2011

10 pages, 5 figures. 21779322[PubMed] PMCID: PMC3136927

Transgeneved/biology.organism_classification_rank.speciesBlotting WesternLongevitylcsh:MedicineMitochondrionMotor ActivityAconitaseAnimals Genetically ModifiedModel OrganismsIron-Binding ProteinsMorphogenesisGeneticsAnimalsHumansModel organismlcsh:ScienceBiologyGeneticsAconitate HydrataseGene knockdownBrain DiseasesMultidisciplinaryMovement Disordersbiologyved/biologyDrosophila Melanogasterfungilcsh:RAnimal Modelsbiology.organism_classificationPhenotypeImmunohistochemistryMitochondriaOxidative StressNeurologyFriedreich AtaxiaGenetics of DiseaseFrataxinbiology.proteinChromatography GelMedicinelcsh:QDrosophilaDrosophila melanogasterResearch ArticleDevelopmental BiologyPLoS ONE
researchProduct

Oxidative stress modulates rearrangement of endoplasmic reticulum-mitochondria contacts and calcium dysregulation in a Friedreich's ataxia model

2020

Friedreich ataxia (FRDA) is a neurodegenerative disorder characterized by neuromuscular and neurological manifestations. It is caused by mutations in the FXN gene, which results in loss of the mitochondrial protein frataxin. Endoplasmic Reticulum-mitochondria associated membranes (MAMs) are inter-organelle structures involved in the regulation of essential cellular processes, including lipid metabolism and calcium signaling. In the present study, we have analyzed in both, unicellular and multicellular models of FRDA, calcium management and integrity of MAMs. We observed that function of MAMs is compromised in our cellular model of FRDA, which was improved upon treatment with antioxidants. I…

0301 basic medicineAtaxiaClinical BiochemistryLipid peroxidationchemistry.chemical_elementMitochondrionCalciumEndoplasmic ReticulumBiochemistry03 medical and health sciences0302 clinical medicineMAMsmedicineAnimalsVitamin EMitochondrial calcium uptakelcsh:QH301-705.5Calcium signalinglcsh:R5-920biologyFrataxinEndoplasmic reticulumOrganic ChemistryN-acetylcysteineMitochondriaCell biologyOxidative StressDrosophila melanogaster030104 developmental biologychemistrylcsh:Biology (General)Friedreich AtaxiaFrataxinbiology.proteinCalciummedicine.symptomCellular modellcsh:Medicine (General)030217 neurology & neurosurgeryResearch PaperRedox Biology
researchProduct

Causative role of oxidative stress in a Drosophila model of Friedreich ataxia

2006

Friedreich ataxia (FA), the most common form of hereditary ataxia, is caused by a deficit in the mitochondrial protein frataxin. While several hypotheses have been suggested, frataxin function is not well understood. Oxidative stress has been suggested to play a role in the pathophysiology of FA, but this view has been recently questioned, and its link to frataxin is unclear. Here, we report the use of RNA interference (RNAi) to suppress the Drosophila frataxin gene (fh) expression. This model system parallels the situation in FA patients, namely a moderate systemic reduction of frataxin levels compatible with normal embryonic development. Under these conditions, fh-RNAi flies showed a shor…

AtaxiaBlotting WesternLongevityGene ExpressionCHO Cellsmedicine.disease_causeBiochemistryAconitaseMitochondrial ProteinsCricetulusRNA interferenceCricetinaeIron-Binding ProteinsGeneticsmedicineAnimalsDrosophila ProteinsRNA MessengerMolecular BiologyGeneAconitate HydrataseHyperoxiaGeneticsElectron Transport Complex IbiologyReverse Transcriptase Polymerase Chain ReactionSuccinate dehydrogenasefungiImmunohistochemistryCell biologySuccinate DehydrogenaseOxidative StressDrosophila melanogasterFriedreich AtaxiaFrataxinbiology.proteinRNA Interferencemedicine.symptomOxidative stressBiotechnologyThe FASEB Journal
researchProduct

El balneario de Bellús en los siglos XVIII y XIX, a través de los tratados de hidrología médica

1997

The present work aims to explain the situation of the valencian bathing place in Bellús, through some treatises of medical hydrology from the 18th and 19th centuries which belong to the Library and Historico-medical Museum of Valencia. The architectural and technical conditions of the building are described, as well as the methods of water analysis and the therapeutical use of water.

Historylcsh:History of scholarship and learning. The humanitieslcsh:R131-687Valencianlanguage.human_languageHistory and Philosophy of Sciencelcsh:History of medicine. Medical expeditionslcsh:AZ20-999AZ20-999languageHistory of scholarship and learning. The humanitiesHumanitiesHistory of medicine. Medical expeditionsR131-687Asclepio: Revista de Historia de la Medicina y de la Ciencia
researchProduct

dfh is a Drosophila homolog of the Friedreich's ataxia disease gene

2000

Abstract A putative Drosophila homolog of the Friedreich's ataxia disease gene (FRDA) has been cloned and characterized; it has been named Drosophila frataxin homolog (dfh). It is located at 8C/D position on X chromosome and is spread over 1 kb, a much smaller genomic region than the human gene. Its genomic organization is simple, with a single intron dividing the coding region into two exons. The predicted encoded product has 190 amino acids, being considered a frataxin-like protein on the basis of the sequence and secondary structure conservation when compared with human frataxin and related proteins from other eukaryotes. The closest match between the Drosophila and the human proteins in…

Signal peptideDNA ComplementaryEmbryo NonmammalianMolecular Sequence DataMutantEmbryonic DevelopmentGenes InsectExonIron-Binding ProteinsGeneticsAnimalsDrosophila ProteinsCoding regionAmino Acid SequenceRNA MessengerCloning MolecularGeneIn Situ HybridizationGenomic organizationGeneticsSequence Homology Amino AcidbiologyIntronGene Expression Regulation DevelopmentalDNAExonsSequence Analysis DNAGeneral MedicineBlotting NorthernIntronsPhosphotransferases (Alcohol Group Acceptor)Drosophila melanogasterFriedreich AtaxiaFrataxinbiology.proteinDrosophilaSequence AlignmentGene
researchProduct