0000000000076770

AUTHOR

Stephan Schneuwly

showing 7 related works from this author

Altered lipid metabolism in a Drosophila model of Friedreich's ataxia

2010

13 páginas, 5 figuras.-- et al.

MaleAtaxiaCell SurvivalLipid Metabolism Disordersmedicine.disease_causeNervous SystemAnimals Genetically ModifiedLipid peroxidationchemistry.chemical_compoundDownregulation and upregulationIron-Binding ProteinsLipid dropletGeneticsmedicineAnimalsDrosophila ProteinsHumansMolecular BiologyGenetics (clinical)Membrane GlycoproteinsbiologyCélulas glialesFatty AcidsLipid metabolismArticlesGeneral MedicineCell biologyDisease Models AnimalOxidative Stressmedicine.anatomical_structurechemistryBiochemistryFriedreich AtaxiaFrataxinbiology.proteinNeurogliaDrosophilaLipid Peroxidationmedicine.symptomCarrier ProteinsNeurogliaOxidative stress
researchProduct

The DrosDel Collection

2004

Abstract We describe a collection of P-element insertions that have considerable utility for generating custom chromosomal aberrations in Drosophila melanogaster. We have mobilized a pair of engineered P elements, p{RS3} and p{RS5}, to collect 3243 lines unambiguously mapped to the Drosophila genome sequence. The collection contains, on average, an element every 35 kb. We demonstrate the utility of the collection for generating custom chromosomal deletions that have their end points mapped, with base-pair resolution, to the genome sequence. The collection was generated in an isogenic strain, thus affording a uniform background for screens where sensitivity to genetic background is high. The…

Set (abstract data type)Whole genome sequencingGeneticsP elementbiologyMolecular screeningStrain (biology)GeneticsDrosophila melanogasterbiology.organism_classificationSelection (genetic algorithm)Sequence (medicine)Genetics
researchProduct

Disarrangement of Endoplasmic reticulum-mitochondria communication impairs Ca2+ homeostasis in FRDA

2020

AbstractFriedreich ataxia (FRDA) is a neurodegenerative disorder characterized by neuromuscular and neurological manifestations. It is caused by mutations in gene FXN, which results in loss of the mitochondrial protein frataxin. Endoplasmic Reticulum-mitochondria associated membranes (MAMs) are inter-organelle structures involved in the regulation of essential cellular processes, including lipid metabolism and calcium signaling. In the present study, we have analyzed in both, unicellular and multicellular models of FRDA, an analysis of calcium management and of integrity of MAMs. We observed that function of MAMs is compromised in our cellular model of FRDA, which was improved upon treatmen…

0303 health sciencesbiologyEndoplasmic reticulumLipid metabolismMitochondrionbiology.organism_classification3. Good healthCell biology03 medical and health sciences0302 clinical medicineFrataxinbiology.proteinMitochondrial calcium uptakeCellular modelDrosophila melanogaster030217 neurology & neurosurgery030304 developmental biologyCalcium signaling
researchProduct

Overexpression of Human and Fly Frataxins in Drosophila Provokes Deleterious Effects at Biochemical, Physiological and Developmental Levels

2011

10 pages, 5 figures. 21779322[PubMed] PMCID: PMC3136927

Transgeneved/biology.organism_classification_rank.speciesBlotting WesternLongevitylcsh:MedicineMitochondrionMotor ActivityAconitaseAnimals Genetically ModifiedModel OrganismsIron-Binding ProteinsMorphogenesisGeneticsAnimalsHumansModel organismlcsh:ScienceBiologyGeneticsAconitate HydrataseGene knockdownBrain DiseasesMultidisciplinaryMovement Disordersbiologyved/biologyDrosophila Melanogasterfungilcsh:RAnimal Modelsbiology.organism_classificationPhenotypeImmunohistochemistryMitochondriaOxidative StressNeurologyFriedreich AtaxiaGenetics of DiseaseFrataxinbiology.proteinChromatography GelMedicinelcsh:QDrosophilaDrosophila melanogasterResearch ArticleDevelopmental BiologyPLoS ONE
researchProduct

Oxidative stress modulates rearrangement of endoplasmic reticulum-mitochondria contacts and calcium dysregulation in a Friedreich's ataxia model

2020

Friedreich ataxia (FRDA) is a neurodegenerative disorder characterized by neuromuscular and neurological manifestations. It is caused by mutations in the FXN gene, which results in loss of the mitochondrial protein frataxin. Endoplasmic Reticulum-mitochondria associated membranes (MAMs) are inter-organelle structures involved in the regulation of essential cellular processes, including lipid metabolism and calcium signaling. In the present study, we have analyzed in both, unicellular and multicellular models of FRDA, calcium management and integrity of MAMs. We observed that function of MAMs is compromised in our cellular model of FRDA, which was improved upon treatment with antioxidants. I…

0301 basic medicineAtaxiaClinical BiochemistryLipid peroxidationchemistry.chemical_elementMitochondrionCalciumEndoplasmic ReticulumBiochemistry03 medical and health sciences0302 clinical medicineMAMsmedicineAnimalsVitamin EMitochondrial calcium uptakelcsh:QH301-705.5Calcium signalinglcsh:R5-920biologyFrataxinEndoplasmic reticulumOrganic ChemistryN-acetylcysteineMitochondriaCell biologyOxidative StressDrosophila melanogaster030104 developmental biologychemistrylcsh:Biology (General)Friedreich AtaxiaFrataxinbiology.proteinCalciummedicine.symptomCellular modellcsh:Medicine (General)030217 neurology & neurosurgeryResearch PaperRedox Biology
researchProduct

Causative role of oxidative stress in a Drosophila model of Friedreich ataxia

2006

Friedreich ataxia (FA), the most common form of hereditary ataxia, is caused by a deficit in the mitochondrial protein frataxin. While several hypotheses have been suggested, frataxin function is not well understood. Oxidative stress has been suggested to play a role in the pathophysiology of FA, but this view has been recently questioned, and its link to frataxin is unclear. Here, we report the use of RNA interference (RNAi) to suppress the Drosophila frataxin gene (fh) expression. This model system parallels the situation in FA patients, namely a moderate systemic reduction of frataxin levels compatible with normal embryonic development. Under these conditions, fh-RNAi flies showed a shor…

AtaxiaBlotting WesternLongevityGene ExpressionCHO Cellsmedicine.disease_causeBiochemistryAconitaseMitochondrial ProteinsCricetulusRNA interferenceCricetinaeIron-Binding ProteinsGeneticsmedicineAnimalsDrosophila ProteinsRNA MessengerMolecular BiologyGeneAconitate HydrataseHyperoxiaGeneticsElectron Transport Complex IbiologyReverse Transcriptase Polymerase Chain ReactionSuccinate dehydrogenasefungiImmunohistochemistryCell biologySuccinate DehydrogenaseOxidative StressDrosophila melanogasterFriedreich AtaxiaFrataxinbiology.proteinRNA Interferencemedicine.symptomOxidative stressBiotechnologyThe FASEB Journal
researchProduct

GAL4-responsive UAS- tau as a tool for studying the anatomy and development of the Drosophila central nervous system

1997

To improve the quality of cytoplasmic labelling of GAL4-expressing cells in Drosophila enhancer-trap and transgenic strains, a new GAL4-responsive reporter UAS-tau, which features a bovine tau cDNA under control of a yeast upstream activation sequence (UAS), was tested. Tau, a microtubule-associated protein, is distributed actively and evenly into all cellular processes. Monoclonal anti-bovine Tau antibody reveals the axonal structure of the labelled cells with detail similar to that of Golgi impregnation. We demonstrate that the UAS-tau system is especially useful for studying processes of differentiation and reorganisation of identified neurones during postembryonic development.

Central Nervous SystemSaccharomyces cerevisiae ProteinsHistologyTransgenetau ProteinsBiologyProteomicsPathology and Forensic MedicineAnimals Genetically ModifiedFungal ProteinsUpstream activating sequenceGenes ReporterComplementary DNAmental disordersAnimalsEnhancer trapGenetic TestingTranscription factorNeuronsRegulation of gene expressionMetamorphosis BiologicalAntibodies MonoclonalGene Expression Regulation DevelopmentalCell BiologyAnatomyDNA-Binding ProteinsEnhancer Elements GeneticCytoplasmCattleDrosophilaTranscription FactorsCell and Tissue Research
researchProduct