0000000000076881

AUTHOR

Y. Jading

Proton dripline studies at ISOLDE: 31Ar and 9C

In this contribution examples of the application of new technologies to disentangle the mechanism of $\beta$-delayed multiparticle emission are given. In particular the mechanism of $\beta$2p-emission from $^{31}$Ar has been resolved and proved to be sequential, a preview of $^{9}$C-decay data is discussed.

research product

Spectroscopy at the drip line: the case of 31Ar

The beta decay of exotic nuclei is directly connected to many different and highly relevant issues. While along the years a hundred of nuclei have been identified as beta delayed proton (β-p) emitters only eight have been found to be β-2p emitters and the β-3p decay mode although energetically allowed has so far not been observed [1].

research product

New information on β-delayed neutron emission from Be-12, Be-14

17 pages, 3 tables, 5 figures, 1 appendix.-- PACS nrs.: 23.40.Hc; 27.20.+n.

research product

Single-Neutron States inS133n

The location of several single-neutron states in ${}^{133}\mathrm{Sn}$ has been identified. The ${p}_{3/2}$, ${h}_{9/2}$, and ${f}_{5/2}$ states were found at 853.7, 1560.9, and 2004.6 keV, respectively, by measuring $\ensuremath{\gamma}$ rays in coincidence with delayed neutrons following the decay of ${}^{134}\mathrm{In}$. Crucial for obtaining the new data were the improved yields at the mass-separator facility ISOLDE-PSB at CERN. A semiempirically adjusted Woods-Saxon calculation, based on parameters from the Pb region and normalized on the mass data at ${}^{132}\mathrm{Sn}$, reproduces the new single particle energies with good precision.

research product

Production of radioactive Ag ion beams with a chemically selective laser ion source

Abstract We have developed a chemically selective laser ion source at the CERN-ISOLDE facility in order to study neutron-rich Ag nuclides. A pulsed laser system with high repetition rate has been used based on high-power coppe-vapour pump lasers and dye lasers. With this source significant reductions of the isobaric background has been achieved.

research product

Proton dripline studies at ISOLDE: 31Ar and 9C

In this contribution examples of the application of new technologies to disentangle the mechanism of beta-delayed multiparticle emission are given. In particular the mechanism of β-delayed two-proton emission from 31Ar has be resolved and proved to be sequential, a preview of 9C-decay data is discussed. peerReviewed

research product

The β2p decay mechanism of Ar

We have measured the beta-decay of Ar-31 with a high granularity setup sensitive to multiparticle decay branches. Two-proton emission is observed from the isobaric analog state in Cl-31 to the four lowest states in P-29 and furthermore from a large number of states fed in Gamow-Teller transitions. The mechanism of two-proton emission is studied via energy and angular correlations between the two protons. In all cases the mechanism is found to be sequential yielding information about states in S-30 up to 8 MeV excitation energy. Improved data on the beta-delayed one-proton branches together with the two-proton data provide precise information about the beta-strength distribution up to 15 MeV…

research product

Determination of the spin of 31Ar

Abstract The beta-delayed proton emission from the lightest Ar-isotopes has been recorded with a high-granularity, large solid-angle Si-detector set-up. Proton energy shifts due to beta-recoil have been measured. We demonstrate how this allows the spin of 31 Ar to be determined as 5/2. The method can be applied at decay rates as low as 1 s −1 .

research product

New states in heavy Cd isotopes and evidence for weakening of the N = 82 shell structure

A chemically selective laser ion source has been used in a β-decay study of heavy Ag isotopes into even-even Cd nuclides. Gamma-spectroscopic techniques in time-resolving event-by-event and multiscaling modes have permitted the identification of the first 2+ and 4+ levels in 126Cd78, 128Cd80, and tentatively the 2+ state in 130Cd82. From a comparison of these new states in 48Cd with the E(2+) and E(4+)/E(2+) level systematics of 46Pd and 52Te isotopes and several recent model predictions, possible evidence for a weakening of the spherical N = 82 neutron-shell below double-magic 132Sn is obtained.

research product

$\beta$ - decay of the M$_{T}$=-1 nucleus $^{58}$Zn studied by selective laser ionization

$\beta$ - decay of $^{58}$Zn has been studied for the first time. A new laser ion-source concept has been used to produce mass-separated sources for $\beta$ and $\gamma$ - spectroscopy. The half-life of $^{58}$Zn was determined to be 86(18) ms. Comparisons are made with previous data from charge-exchange reactions. Our Gamow-Teller strength to the 1$^{+}$ state at 1051 keV excitation in $^{58}$Cu agrees well with the value extracted from a recent ($^{3}$He, t) study. Extensive shell-model calculations are presented.

research product

Selective laser ionization of radioactive Ni-isotopes

Abstract A chemically selective laser ion source based on resonance ionization of atoms in a hot cavity has been applied in the study of Ni-isotopes at the CERN-ISOLDE on-line isotope separator. Laser ionization enhanced the yields of long-lived Ni-isotopes almost four orders of magnitude when compared to the yields obtained with the surface ionization mode of the source. As a result, high yields of long-lived Ni-isotopes were obtained. Separation efficiencies of 0.3 and 0.8% were obtained for Ni produced in uranium-carbide, produced from uranium-di-pthalocyanine, and Ta-foil targets, respectively. Ni was found to be released very slowly from the present target and ion source combination.

research product

Spectroscopy with β2p and β-ν recoil shifts

9 pages, 4 figures.-- Printed version published Apr 22, 2002.

research product

Decay of Neutron-Rich Mn Nuclides and Deformation of Heavy Fe Isotopes

The use of chemically selective laser ionization combined with beta-delayed neutron counting at CERN/ISOLDE has permitted identification and half-life measurements for 623-ms Mn-61 up through 14-ms Mn-69. The measured half-lives are found to be significantly longer near N=40 than the values calculated with a QRPA shell model using ground-state deformations from the FRDM and ETFSI models. Gamma-ray singles and coincidence spectroscopy has been performed for Mn-64 and Mn-66 decays to levels of Fe-64 and Fe-66, revealing a significant drop in the energy of the first 2+ state in these nuclides that suggests an unanticipated increase in collectivity near N=40.

research product

Two-proton decay of the isobaric analogue state of Ar-31

8 pages, 1 table, 4 figures.-- Journal issue title: "Nucleus-Nucleus Collisions".

research product

Beta-decay studies of far from stability nuclei near N = 28

Abstract Beta-decay half-lives and β-delayed neutron-emission probabilities of the very neutron-rich nuclei 43 P, 42,44,45 S and 44–46 Cl, 47 Ar, which lie at or close to the N=28 magic shell, have been recently measured through β or β-n time correlation measurement. The results are compared to recent model predictions and indicate a rapid weakening of the N=28 shell effect below 48 Ca. The nuclear structure effects reflected in the decay properties of the exotic S and Cl isotopes may be the clue for the astrophysical understanding of the unusual 48 Ca 46 Ca abundance ratio measured in the solar system.

research product