0000000000076937
AUTHOR
Oula Wichmann
Uranyl(VI) complexes with a diaminobisphenol from eugenol and N-(2-aminoethyl)morpholine: Syntheses, structures and extraction studies
Abstract The syntheses and structural studies of an [O,N,O,N′]-type phenolic ligand [(N’,N’-bis(2-hydroxy-3-methoxy-5-(propen-2-yl)benzyl)-N-(2-aminoethyl)morpholine), (H2L) and two new uranyl complexes of this ligand are described. The reaction between uranyl nitrate hexahydrate and H2L in a 1:2 M ratio (M to H2L) results in a uranyl complex of the formula [UO2(HL)(NO3)(H2O)] (1). In the presence of a base (triethylamine), with the same molar ratio, the uranyl complex [UO2(HL)2]·2CH3CN (2) is formed. The molecular structures H2L, 1 and 2 were verified by X-ray crystallography. Both uranyl complexes are zwitterions with a neutral net charge. A comprehensive NMR-structural analyses of all co…
Oxidovanadium(V) Complexes with Aminoethanol Bis(phenolate) [O,N,O,O] Ligands: Preparations, Structures, N-Dealkylation and Condensation Reactions
The reactions between [VO(acac)2] (acac– = acetylacetonate ion) or [VO(OPr)3] and trianionic tetradentate N,N-bis(2-methylene-4,6-alkylphenolate)aminoethanolate ligands, [L13– (4,6-dimethyl), L23– (4-methyl, 6-tert-butyl), L33– (4-tert-butyl, 6-methyl), L43– (4,6-di-tert-butyl)], afford mononuclear complexes [VO(L1)] (1) and [VO(L2)] (2) with a trigonal bipyramidal coordination sphere around the VV ion, or dinuclear octahedral complexes [V2O2(L3)2] (3) and [V2O2(L4)2] (4). In methanol an adduct with the formula [VO(L1)(MeOH)]·1/2MeOH (5) is obtained. According to multinuclear NMR spectroscopy all those complexes have a mononuclear structure in CDCl3 solutions. In wet polar solvents complex …
Oxotungsten(VI) complexes with amino(phenolate)alcoholate ligand
Abstract The reaction between tungsten(VI) complex [W(eg)3] (eg = 1,2-ethanediolato dianion) and a phenolic ligand precursor 2,4-di-tert-butyl-6-(((2-hydroxyethyl)(methyl)amino)methyl)phenol (H2L) affords a monomeric oxotungsten complex [WO(eg)(L)]. This complex reacts further with Me3SiCl, which leads to the displacement of ethanediolato ligand from the complex unit and formation of cis- and trans-isomers of corresponding dichloro complex [WOCl2(L)]. Identical dichloro complexes were also prepared by the reaction between H2L and WOCl4. Molecular structure of [WO(eg)(L)] was verified by X-ray crystallography.
A Combined Experimental and Theoretical Study on the Magnetic Properties of a Family of Bis(μ‐phenoxido)dicopper(II) Complexes Bearing ω‐[Bis(2‐hydroxy‐3,5‐dimethylbenzyl)amino]alkan‐1‐ol Ligands
Five new neutral bis(μ-phenoxido)dicopper(II) complexes, [Cu2(μ-HL1)2]·3EtOH·H2O (1), [Cu2(μ-HL2)2]·1.65H2O (2), [Cu2(μ-HL3)2(μ-H2O)] (3), [Cu2(μ-HL4)2] (4) and [Cu2(μ-HL5)2(μ-H2O)] (5), were prepared from a family of ω-[bis(2-hydroxy-3,5-dimethylbenzyl)amino]alkan-1-ol ligands (H3L1–H3L5 derived from 2-aminoethanol, 3-aminopropanol, 4-aminobutanol, 5-aminopentanol and 6-aminohexanol, respectively) bearing a [O,N,O,O′] donor set. In complexes 3 and 5, there is also a bridging water molecule between the metallic centres. The copper(II) coordination planes of all these complexes form a roof-like structure (the bridging O atoms are located at the top of the roof). The structural differences fo…
Structural properties and applications of multidentate [O,N,O,X'] aminobisphenolate metal complexies
Abstract Aminobisphenols with side-arm donors are versatile tetradentate ligands that effectively coordinate to the metal ions in a tripodal fashion. Most of the metal ions form electrically neutral isolable complexes with aminobisphenolates with different side chains. However, some anionic complexes and zwitterions are also described. The coordination geometry of the metal centre can be controlled by the ligand design. Especially, the ortho -substituents of the phenolate moieties as well as the nature of side-arm donor influence the structure and reactivity of the complexes formed. Depending on the metal ion and the ligand environment, the complexes formed can be monomeric or dimeric ones.…
A chiral diamine bis-phenolate complex of dioxomolybdenum(VI)
Abstract A new dioxomolybdenum(VI) complex with a chiral tetradentate ligand is reported. The tripodal ligand containing two nitrogen atoms and two phenolic oxygen atoms was synthesized starting from a chiral diamine precursor. Further reaction with [MoO2(acac)2] yielded a monomeric molybdenum complex as a bright yellow solid. The structures of the molybdenum complex and the free diamine bis-phenol ligand were determined by X-ray diffraction.
One-Pot Three-Component Solvent-Free Syntheses of n-Alkyl-Bridged N,N,N,N-tetra(2-hydroxybenzyl)diamines and N,N-bis(2-hydroxybenzyl) amines
A simple solvent-free method to prepare four N,N,N’,N’-tetra(2-hydroxy-3,5dimethylbenzyl)diaminoalkanes and four N,N,N’,N’-tetra(2-hydroxy-5-t-butyl-3-methylbenzyl)-diaminoalkanes containing a long n-alkyl-bridge (58 CH2 groups between N-atoms) is described. In addition, preparations of four dihydrochlorides of prepared n-alkyl-bridged N,N,N’,N’-tetra(2-hydroxybenzyl)diamines are described. This method was also tested in the preparation of eight previously reported N,N-bis(2-hydroxybenzyl)amine derivatives.