0000000000077573

AUTHOR

Bruno G. De Geest

showing 5 related works from this author

Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Mode…

2018

The enhanced permeability and retention (EPR) effect is the only described mechanism enabling nanoparticles (NPs) flowing in blood to reach tumors by a passive targeting mechanism. Here, using the transparent zebrafish model infected with Mycobacterium marinum we show that an EPR-like process also occurs allowing different types of NPs to extravasate from the vasculature to reach granulomas that assemble during tuberculosis (TB) infection. PEGylated liposomes and other NP types cross endothelial barriers near infection sites within minutes after injection and accumulate close to granulomas. Although similar to 100 and 190 nm NPs concentrated most in granulomas, even similar to 700 nm liposo…

inorganic chemicalsEndotheliumGeneral Physics and Astronomy02 engineering and technologyPulmonary Artery010402 general chemistry01 natural sciencesPermeabilitylaw.inventionMiceConfocal microscopylawmedicineAnimalsGeneral Materials ScienceZebrafishTuberculosis PulmonaryMycobacterium marinumZebrafishLiposomeGranulomaMicroscopy ConfocalbiologyChemistryGeneral Engineeringtechnology industry and agriculture021001 nanoscience & nanotechnologybiology.organism_classificationExtravasation0104 chemical sciencesDisease Models Animalmedicine.anatomical_structurePermeability (electromagnetism)Drug deliveryBiophysicsMycobacterium marinumNanoparticles0210 nano-technology
researchProduct

Squaric Ester-Based, pH-Degradable Nanogels: Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modula…

2021

Small-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration. To this aim, a primary amine-reactive methacrylamide monomer bearing a pendant squaric ester amide is introduced, which i…

Polymersmedicine.medical_treatmentNanogelsVACCINEPharmacology010402 general chemistry01 natural sciencesBiochemistryMicelleCatalysisArticlePolymerizationchemistry.chemical_compoundColloid and Surface ChemistryAdjuvants ImmunologicSDG 3 - Good Health and Well-beingmedicineMedicine and Health SciencesAnimalsHumansReversible addition−fragmentation chain-transfer polymerizationMicellesTLR8AMIDESDrug CarriersMice Inbred BALB CChemistryOptical ImagingBiology and Life SciencesEstersGeneral ChemistryTLR7Hydrogen-Ion Concentration0104 chemical sciencesImidazoquinolineDrug LiberationCONJUGATIONToll-Like Receptor 7Toll-Like Receptor 8Systemic administrationImmunotherapyNanocarriersADJUVANTSAdjuvantNanogel
researchProduct

Nanomedicine and macroscale materials in immuno-oncology

2019

Immunotherapy is revolutionizing the treatment of cancer. It can achieve unprecedented responses in advanced-stage patients, including complete cures and long-term survival. However, immunotherapy also has limitations, such as its relatively low response rates and the development of severe side effects. These drawbacks are gradually being overcome by improving our understanding of the immune system, as well as by establishing combination regimens in which immunotherapy is combined with other treatment modalities. In addition to this, in recent years, progress made in chemistry, nanotechnology and materials science has started to impact immuno-oncology, resulting in more effective and less t…

medicine.medical_specialtyChemistry(all)Macromolecular Substancesmedicine.medical_treatmentContext (language use)02 engineering and technologyArticle03 medical and health sciencesNeoplasmsmedicineHumansIntensive care medicine030304 developmental biology0303 health sciencesTumor microenvironmentbusiness.industryNeoplasms therapyGeneral ChemistryImmunotherapy021001 nanoscience & nanotechnologyn/a OA procedure3. Good healthNanomedicineTreatment modalityNanomedicineImmunotherapy0210 nano-technologybusiness
researchProduct

Zebrafish Embryos Allow Prediction of Nanoparticle Circulation Times in Mice and Facilitate Quantification of Nanoparticle–Cell Interactions

2020

The zebrafish embryo is a vertebrate well suited for visualizing nanoparticles at high resolution in live animals. Its optical transparency and genetic versatility allow noninvasive, real-time observations of vascular flow of nanoparticles and their interactions with cells throughout the body. As a consequence, this system enables the acquisition of quantitative data that are difficult to obtain in rodents. Until now, a few studies using the zebrafish model have only described semiquantitative results on key nanoparticle parameters. Here, a MACRO dedicated to automated quantitative methods is described for analyzing important parameters of nanoparticle behavior, such as circulation time and…

NANOCARRIERSEmbryo Nonmammalianmiceanimal structurescirculation timeCellNanoparticleLIPOSOMES02 engineering and technology010402 general chemistry01 natural sciencesSEQUENCEBiomaterialsMiceDELIVERYmedicineMedicine and Health SciencesAnimalsGeneral Materials ScienceZebrafishZebrafishbiologyChemistryMacrophagesEndothelial CellsOptical transparencyPLGAGeneral ChemistryTARGETING MACROPHAGES021001 nanoscience & nanotechnologybiology.organism_classificationzebrafishCANCER0104 chemical sciencesCell biologymacrophagesChemistrymedicine.anatomical_structureCell cultureembryonic structuresZebrafish embryoNanoparticlesCirculation timenanoparticlesNanocarriers0210 nano-technologyANTIBIOTICSBiotechnology
researchProduct

Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels

2020

To target nanomedicines to specific cells, especially of the immune system, nanobodies can be considered as an attractive tool, as they lack the Fc part as compared to traditional antibodies and, thus, prevent unfavorable Fc-receptor mediated mistargeting. For that purpose, we have site-specifically conjugated CD206/MMR-targeting nanobodies to three types of dye-labeled nanogel derivatives: non-degradable nanogels, acid-degradable nanogels (with ketal crosslinks), and single polymer chains (also obtained after nanogel degradation). All of them can be obtained from the same reactive ester precursor block copolymer. After incubation with na&iuml

0301 basic medicineEndosomeNanogels02 engineering and technologyConjugated systemArticleM2 macrophage03 medical and health sciencesHumansReversible addition−fragmentation chain-transfer polymerizationlcsh:QH301-705.5targetingchemistry.chemical_classificationRAFT polymerizationChinese hamster ovary cellGeneral MedicinePolymerHydrogen-Ion Concentrationmultivalency021001 nanoscience & nanotechnologynanobody030104 developmental biologyTAMchemistryCD206lcsh:Biology (General)nanogelclick chemistryClick chemistryBiophysicsNanocarriers0210 nano-technologyNanogelCells
researchProduct