0000000000079583
AUTHOR
Steffen Lorenz
Melatonin induces transcriptional regulation of Bim by FoxO3a in HepG2 cells
Background: Melatonin induces apoptosis in many different cancer cell lines, including hepatocellular carcinoma cells. However, the responsible pathways have not been clearly elucidated. A member of the forkhead transcription factors' family, FoxO3a, has been implicated in the expression of the proapoptotic protein Bim (a Bcl-2-interacting mediator of cell death). In this study, we used human HepG2 liver cancer cells as an in vitro model to investigate whether melatonin treatment induces Bim through regulation by the transcription factor FoxO3a. Methods: Cytotoxicity of melatonin was compared in HepG2 hepatoblastoma cells and primary human hepatocytes. Proapoptotic Bim expression was analys…
Multi-photon imaging of amine-functionalized silica nanoparticles.
A convenient and simple strategy for preparing water soluble, photoluminescent functionalized silica nanoparticles (M-dots) in the absence of fluorophores or metal doping is demonstrated. These M-dots can be used for bioimaging using one and two-photon microscopy. Because of their high photostability, low toxicity and high biocompatibility compared with Lumidot™ CdSe/ZnS quantum dots, functionalized silica particles are superior alternatives for current bioimaging platforms. Moreover, the presence of a free amine group at the surface of the M-dots allows biomolecule conjugation (e.g. with antibodies, proteins) in a single step for converting these photoluminescent SiO(2) nanoparticles into …
Reduced in vitro T-cell responses induced by glutaraldehyde-modified allergen extracts are caused mainly by retarded internalization of dendritic cells
Summary Although allergen-specific immunotherapy is a clinically effective therapy for IgE-mediated allergic diseases, the risk of IgE-mediated adverse effects still exists. For this reason, chemically modified allergoids have been introduced, which may destroy IgE-binding sites while T-cell activation should be retained. The aim of the study was to analyse the differences between intact allergens and differently modified/aggregated allergoids concerning their internalization as well as T-cell and basophil activation. For this purpose human monocyte-derived immature dendritic cells (DC) were incubated with Phleum pratense or Betula verrucosa pollen extract or with the corresponding allergoi…
Inorganic Janus particles for biomedical applications.
Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial pro…
Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension
Aims Recent publications have shed new light on the role of the adaptive and innate immune system in the pathogenesis of hypertension. However, there are limited data whether receptors of the innate immune system may influence blood pressure. Toll-like receptor 4 (TLR4), a pattern recognition receptor, is a key component of the innate immune system, which is activated by exogenous and endogenous ligands. Hypertension is associated with end-organ damage and thus might lead to the release of damage-associated molecular patterns (DAMPs), which are endogenous activators of TLR4 receptors. The present study aimed to elucidate whether TLR4 signalling is able to modulate vascular contractility in …
Vaccination with trifunctional nanoparticles that address CD8+ dendritic cells inhibits growth of established melanoma
Aim: We wanted to assess the potency of a trifunctional nanoparticle (NP) that targeted and activated CD8+ dendritic cells (DC) and delivered an antigen to induce antitumor responses. Materials & methods: The DC targeting and activating properties of ferrous NPs conjugated with immunostimulatory CpG-oligonucleotides, anti-DEC205 antibody and ovalbumin (OVA) as a model antigen to induce antigen-specific T-cell responses and antitumor responses were analyzed. Results: OVA-loaded NP conjugated with immunostimulatory CpG-oligonucleotides and anti-DEC205 antibody efficiently targeted and activated CD8+ DC in vivo, and induced strong OVA-specific T-cell activation. Vaccination of B16/OVA tum…
Effect of phosphonate-functionalised nanoparticles on human mesenchymal stem cells and osteoclasts
Multifunctional two-photon active silica-coated Au@MnO Janus particles for selective dual functionalization and imaging.
Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanopar…