0000000000079944

AUTHOR

Ani Aprahamian

showing 19 related works from this author

Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the $r$-process calculatio…

2018

The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in $r$-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. $^{158}$Nd, $^{160}$Pm, $^{162}$Sm, and $^{164-166}$Gd have been measured for the first time and the precisions for $^{156}$Nd, $^{158}$Pm, $^{162,163}$Eu, $^{163}$Gd, and $^{164}$Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies $S_{2n}$ and neutron pairing energy metrics…

Nuclear TheoryastrofysiikkaRare earthnuclear astrophysicsGeneral Physics and AstronomyFOS: Physical sciences7. Clean energy01 natural sciencesbinding energy and massesNuclear Theory (nucl-th)0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Isotopeta114010308 nuclear & particles physicsNuclear structureharvinaiset maametallitPenning trapAtomic mass3. Good healthAstrophysics - Solar and Stellar Astrophysics13. Climate actionPairingr-processAtomic physicsydinfysiikkaAstrophysics - High Energy Astrophysical Phenomena
researchProduct

rp-process nucleosynthesis at extreme temperature and density conditions

1998

We present nuclear reaction network calculations to investigate the influence of nuclear structure on the rp-process between Ge and Sn in various scenarios. Due to the lack of experimental data for neutron-deficient nuclei in this region, we discuss currently available model predictions for nuclear masses and deformations as well as methods of calculating reaction rates (Hauser-Feshbach) and beta-decay rates (QRPA and shell model). In addition, we apply a valence nucleon (NpNn) correlation scheme for the prediction of masses and deformations. We also describe the calculations of 2p-capture reactions, which had not been considered before in this mass region. We find that in X-ray bursts 2p-c…

PhysicsNuclear reactionNuclear physicsNucleosynthesisNuclear TheoryNuclear structureGeneral Physics and Astronomyp-Nucleirp-processNuclear ExperimentNucleonISOLTRAPp-process
researchProduct

Low-lying level structure of Cu56 and its implications for the rp process

2017

The low-lying energy levels of proton-rich Cu56 have been extracted using in-beam γ-ray spectroscopy with the state-of-the-art γ-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in Cu56 serve as resonances in the Ni55(p,γ)Cu56 reaction, which is a part of the rp process in type-I x-ray bursts. To resolve existing ambiguities in the reaction Q value, a more localized isobaric multiplet mass equation (IMME) fit is used, resulting in Q=639±82 keV. We derive the first experimentally constrained thermonuclear reaction rate for Ni55(p,γ)Cu56. We find that, with this new rate, the …

Physics010308 nuclear & particles physicsQ valuerp-process01 natural sciencesNuclear physicsMass formulaExcited state0103 physical sciencesLevel structureIsobaric processAtomic physics010306 general physicsSpectroscopyMultipletPhysical Review C
researchProduct

New lifetime measurements inPd109and the onset of deformation atN=60

2015

Several new subnanosecond lifetimes were measured in Pd-109 using the fast-timing beta gamma gamma (t) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyvaskyla Ion Guide Isotope Separator On-Line (IGISOL) facility. Lifetimes were obtained for excited states in Pd-109 populated following beta decay of Rh-109. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2(+) states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements. The available nuclear data indicate a s…

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsFissionNuclear structureNuclear data7. Clean energy01 natural sciencesBeta decayIonNuclear physicsExcited state0103 physical sciencesAtomic physics010306 general physicsNucleonPhysical Review C
researchProduct

r -process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos

2018

This is an exciting time for the study of r-process nucleosynthesis. Recently, a neutron star merger GW170817 was observed in extraordinary detail with gravitational waves and electromagnetic radiation from radio to gamma rays. The very red color of the associated kilonova suggests that neutron star mergers are an important r-process site. Astrophysical simulations of neutron star mergers and core collapse supernovae are making rapid progress. Detection of both, electron neutrinos and antineutrinos from the next galactic supernova will constrain the composition of neutrino-driven winds and provide unique nucleosynthesis information. Finally FRIB and other rare-isotope beam facilities will s…

Nuclear and High Energy PhysicsNuclear Theorymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsKilonova01 natural sciences7. Clean energyNuclear Theory (nucl-th)Nucleosynthesis0103 physical sciencesBinary starddc:530Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentStellar evolutionNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsmedia_commonPhysics010308 nuclear & particles physicsAstronomyUniverseNeutron starSupernovaAstrophysics - Solar and Stellar Astrophysicsr-processJournal of Physics G: Nuclear and Particle Physics
researchProduct

Pronounced shape change induced by quasiparticle alignment

2000

Mean lifetimes of high-spin states of Kr-74 have been determined using the Doppler-shift attenuation method. The high-spin states were studied using the Ca-40(Ca-40, alpha 2p) reaction at a beam energy of 160 MeV with the GASP gamma-ray spectrometer. The ground-state band and negative parity side band show the presence of three different configurations in terms of transitional quadrupole deformations. A dramatic shape change was found along the ground-state band after the S-band crossing. The deduced quadrupole deformation changes are well reproduced by cranked Woods-Saxon Strutinsky calculations.

PhysicsNuclear and High Energy PhysicsShape changeSpectrometerIsotopeAttenuationNuclear TheoryKryptonFísicachemistry.chemical_elementParity (physics)chemistryQuadrupoleQuasiparticleAtomic physicsPhysical Review C
researchProduct

Structure of exotic 7He and 9He

2004

The heavy helium isotopes 7,9 He were studied via their isobaric analog states (IAS) in 7,9 Li. The IAS were populated via resonance reactions of protons with radioactive beams of 6,8 He. The isospin-conserving neutron decay of T=3/2 resonances in 7 Li and proton decay of T=5/2 resonances in 9 Li were measured. New spectroscopic information on these states were obtained, and compared with the properties of levels in 7,9 He.

Nuclear physicsPhysicsNuclear and High Energy PhysicsProton decayNuclear TheoryIsobaric processResonanceNeutronAtomic physicsNuclear ExperimentIsotopes of heliumNuclear Physics A
researchProduct

Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP

2019

The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…

EFFICIENCYrare and new isotopesastrofysiikkanuclear astrophysicsNuclear Theoryr processFOS: Physical sciencesnucl-ex01 natural sciences7. Clean energybinding energy and massesIonPENNING TRAPS0103 physical sciencesNuclear Physics - ExperimentNeutronNuclideIONNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentDETECTORPhysicsScience & TechnologySTABILITYIsotope010308 nuclear & particles physicsPhysicsR-PROCESSRAMSEY METHODPenning trapnuclear structure and decaysAtomic massNeutron capturePhysics NuclearSPECTROMETRY13. Climate actionPairingPhysical SciencesELECTRONAtomic physicsydinfysiikkaDECAYPhysical Review C
researchProduct

International workshop on next generation gamma-ray source

2022

Journal of physics / G 49(1), 010502 (2022). doi:10.1088/1361-6471/ac2827

Accelerator Physics (physics.acc-ph)Nuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear Theorynucleon: structurepi: photoproduction[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]conference summarynuclear astrophysicsFOS: Physical scienceslow-energy QCD[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530bremsstrahlung01 natural scienceselectron: acceleratorNuclear Theory (nucl-th)parity: violationnuclear physicsquantum chromodynamics0103 physical sciencesAgency (sociology)ddc:530gamma-rayApplied researchNuclear Experiment (nucl-ex)010306 general physicsphoton: beamNuclear Experimentactivity reportenergy: lowPhysicsastrophysics010308 nuclear & particles physicsInformation sharinglaserhadronic parity violationgamma raynuclear structureSystems engineeringPhysics - Accelerator PhysicsCompton scatteringJournal of Physics G: Nuclear and Particle Physics
researchProduct

New insights into triaxiality and shape coexistence from odd-mass Rh109

2018

Rapid shape evolutions near A = 100 are now the focus of much attention in nuclear science. Much of the recent work has been centered on isotopes with Z <= 40, where the shapes are observed to transition between near-spherical to highly deformed with only a single pair of neutrons added. At higher Z, the shape transitions become more gradual as triaxiality sets in, yet the coexistence of varying shapes continues to play an important role in the low-energy nuclear structure, particularly in the odd-Z isotopes. This work aims to characterize competing shapes in the triaxial region between Zr and Sn isotopes using ultrafast timing techniques to measure lifetimes of excited states in the neutro…

PhysicsWork (thermodynamics)Isotope010308 nuclear & particles physicsNuclear TheoryNuclear structure01 natural sciencesMolecular physicsMeasure (mathematics)Atomic orbitalExcited state0103 physical sciencesNeutronNuclear Experiment010306 general physicsNucleonPhysical Review C
researchProduct

Nuclear Structure Properties of Neutron Rich Ge-Br Isotopes in the Astrophysical r-Process

2006

The astrophysical r-process is responsible for synthesis of roughly half of the elements heavier than iron. In spite of this significance, there are many uncertainties regarding the site of the r-process and the neutron-rich nuclei involved. Studying these nuclei presents a challenge, as they lie far from the valley of stability. Nuclear properties such as β decay half-lives and βdelayed neutron emission probabilities are critical inputs for r-process models. The neutron rich Ge-Br isotopes are in the region just after the N=50 bottle neck in the “classical” r-process, or may serve as seed material for the high entropy neutrino-wind r-process. Neutron rich nuclei play an important role in b…

PhysicsNuclear physicsIsotopes of germaniumNeutron emissionValley of stabilityNuclear Theorytechnology industry and agricultureNeutron cross sectionr-processNeutronNuclear Experiments-processNeutron activationAIP Conference Proceedings
researchProduct

β-decay measurements ofA≃ 70 − 110 r-process nuclei at the National Superconducting Cyclotron Laboratory

2011

The present paper reports on several r-process motivated β-decay experiments undertaken at the National Superconducting Cyclotron Laboratory. β-decay half-lives and β-delayed neutron-emission probabilities were measured for nuclei around the r-process A = 70–80 and A = 90 – 110 mass regions. The data are discussed on the basis of quasi-random phase approximation calculations. The emphasis is made on the impact of these data upon calculations of r-process abundances.

PhysicsHistoryNeutron emissionHadronCyclotronComputer Science ApplicationsEducationlaw.inventionNuclear physicslawr-processNeutronAtomic physicsNucleonRandom phase approximationRadioactive decayJournal of Physics: Conference Series
researchProduct

β-decay studies of r-process nuclei at NSCL

2008

Abstract Observed neutron-capture elemental abundances in metal-poor stars, along with ongoing analysis of the extremely metal-poor Eu-enriched sub-class provide new guidance for astrophysical models aimed at finding the r-process sites. The present paper emphasizes the importance of nuclear physics parameters entering in these models, particularly β -decay properties of neutron-rich nuclei. In this context, several r-process motivated β -decay experiments performed at the National Superconducting Cyclotron Laboratory (NSCL) are presented, including a summary of results and impact on model calculations.

Nuclear physicsPhysicsNuclear and High Energy PhysicsStarsSuperconducting cyclotronDouble beta decayr-processContext (language use)Nuclear ExperimentBeta decayNuclear Physics A
researchProduct

β-decay half-lives andβ-delayed neutron emission probabilities of nuclei in the regionA≲110, relevant for the r process

2009

Measurements of $\ensuremath{\beta}$-decay properties of $A\ensuremath{\lesssim}110$ r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. $\ensuremath{\beta}$-decay half-lives for $^{105}\mathrm{Y}$, $^{106,107}\mathrm{Zr}$, and $^{111}\mathrm{Mo}$, along with $\ensuremath{\beta}$-delayed neutron emission probabilities of $^{104}\mathrm{Y}$, $^{109,110}\mathrm{Mo}$ and upper limits for $^{105}\mathrm{Y}$, $^{103\ensuremath{-}107}\mathrm{Zr}$, and $^{108,111}\mathrm{Mo}$ have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these…

Nuclear physicsPhysicsNuclear and High Energy PhysicsSuperconducting cyclotronNeutron emissionDouble beta decayIsotopes of zirconiumr-processAtomic numberAtomic physicsRandom phase approximationDelayed neutronPhysical Review C
researchProduct

β-Decay Studies Close to the N=82 r-process Path

2005

New half-lives for neutron-rich ruthenium, rhodium and palladium isotopes close to the r-process path along the N=82 closed shell have been measured at the National Superconducting Cyclotron Laboratory at Michigan State University. The studied isotopes are close to the critical A=118-126 mass region in the astrophysical r-process, where incorrect nuclear structure development towards the shell closure may have the most pronounced effect on the abundances of elements produced. Neutron-rich nuclei were produced by fragmentation of a 120-MeV per nucleon 136 Xe beam on Be and were separated by the A1900 fragment separator. The nuclei of interest were implanted into a double-sided Si strip detec…

PhysicsNuclear and High Energy PhysicsIsotopeNuclear TheoryNuclear structurechemistry.chemical_elementKinetic energyRhodiumNuclear physicschemistryIsotopes of palladiumr-processAtomic physicsNuclear ExperimentNucleonOpen shellNuclear Physics A
researchProduct

Isobaric analog states as a tool for spectroscopy of exotic nuclei

2005

Abstract Spectroscopy of neutron rich exotic isotopes via their isobaric analog states (IAS) in less exotic nuclei is discussed. Several different experimental techniques, which can be applied to search for IAS of exotic isotopes, are described. Successful application of these techniques to the studies of heavy helium isotopes 7 He and 9 He led to the observation of unknown IAS in 7 Li and 9 Li. Spectroscopic information for these states were obtained, and implication of these findings to the structure of 7,9 He is considered.

Elastic scatteringNuclear physicsNuclear reactionNuclear and High Energy PhysicsIsotopeChemistryIsobaric processNeutronAtomic physicsNuclear ExperimentSpectroscopyInstrumentationIsotopes of heliumNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

The endpoint of the rp-process

1997

Abstract The endpoint of rp-process nucleosynthesis in X-ray bursts determines the fuel consumption, the energy generation, and the abundance pattern of the produced nuclei. To investigate the time structure of rp-process nucleosynthesis, we used a nuclear reaction network including nuclei from H to Sn. We found that if 2p-capture reactions are included, the synthesis of nuclei heavier than Kr proceeds faster than previously thought. Therefore, in most X-ray bursts large amounts of nuclei in the A=80–100 region are expected to be produced. With an escape factor of about 1%, X-ray bursts could account for the large observed solar system abundances of the light p-nuclei like 92 Mo and 96 Ru t…

Reaction rateNuclear physicsPhysicsNuclear reactionNuclear and High Energy PhysicsSolar SystemAbundance (chemistry)NucleosynthesisAstrophysicsrp-processTime structure
researchProduct

Determining therp-Process Flow throughNi56: Resonances inCu57(p,γ)Zn58Identified with GRETINA

2014

An approach is presented to experimentally constrain previously unreachable (p, γ) reaction rates on nuclei far from stability in the astrophysical rp process. Energies of all critical resonances in the (57)Cu(p,γ)(58)Zn reaction are deduced by populating states in (58)Zn with a (d, n) reaction in inverse kinematics at 75 MeV/u, and detecting γ-ray-recoil coincidences with the state-of-the-art γ-ray tracking array GRETINA and the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The results reduce the uncertainty in the (57)Cu(p,γ) reaction rate by several orders of magnitude. The effective lifetime of (56)Ni, an important waiting point in the rp process in x-ray burst…

PhysicsReaction rateChemical substanceSuperconducting cyclotronOrders of magnitude (time)Radiative captureFlow (psychology)Analytical chemistryGeneral Physics and Astronomyrp-processNuclear ExperimentPhysical Review Letters
researchProduct

Half-Life of the Doubly Magicr-Process NucleusN78i

2005

Nuclei with magic numbers serve as important benchmarks in nuclear theory. In addition, neutron-rich nuclei play an important role in the astrophysical rapid neutron-capture process (r process). 78Ni is the only doubly magic nucleus that is also an important waiting point in the r process, and serves as a major bottleneck in the synthesis of heavier elements. The half-life of 78Ni has been experimentally deduced for the first time at the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory at Michigan State University, and was found to be 110(+100)(-60) ms. In the same experiment, a first half-life was deduced for 77Ni of 128(+27)(-33) ms, and more precise half-li…

PhysicsCyclotronMagic (programming)General Physics and AstronomyHalf-lifeBeta decaylaw.inventionNuclear physicsmedicine.anatomical_structurelawDouble beta decaymediciner-processAtomic physicsNuclear theoryNucleusPhysical Review Letters
researchProduct