0000000000085048
AUTHOR
S. Singkarat
Fast and blister-free irradiation conditions for cross-linking of PMMA induced by 2MeV protons
For soft lithography, the conventional negative tone resists, such as SU-8, that are used to create the mold have a number of drawbacks. PMMA, which is normally used as a positive tone resist, can be used as a negative resist by using high-fluence irradiation conditions. In this report, we outline optimization of the irradiation conditions for PMMA thin films using 2MeV H^+ ions to exploit their ability to work as a negative tone resist at ion fluences above 1.0x10^1^5ionscm^-^2. The main aim was to induce cross-linking while maintaining the exposed regions free of blisters and maintaining short irradiation times. We found that by using a two-step process with a low-flux irradiation, follow…
Development of economic MeV-ion microbeam technology at Chiang Mai University
Developing high technologies but in economic manners is necessary and also feasible for developing countries. At Chiang Mai University, Thailand, we have developed MeV-ion microbeam technology based on a 1.7-MV Tandetron tandem accelerator with our limited resources in a cost-effective manner. Instead of using expensive and technically complex electrostatic or magnetic quadrupole focusing lens systems, we have developed cheap MeV-ion microbeams using programmed L-shaped blade aperture and capillary techniques for MeV ion beam lithography or writing and mapping. The programmed L-shaped blade micro-aperture system consists of a pair of L-shaped movable aperture pieces which are controlled by …
Direct Writing of Channels for Microfluidics in Silica by MeV Ion Beam Lithography
The lithographic exposure characteristic of amorphous silica (SiO2) was investigated for 6.8 MeV16O3+ions. A programmable proximity aperture lithography (PPAL) technique was used for the ion beam exposure. After exposure, the exposed pattern was developed by selective etching in 4% v/v HF. Here, we report on the development of SiO2in term of the etch depth dependence on the ion fluence. This showed an exponential approach towards a constant asymptotic etch depth with increasing ion fluence. An example of microfluidic channels produced by this technique is demonstrated.
Fabrication of microfluidic devices using MeV ion beam Programmable Proximity Aperture Lithography (PPAL)
Abstract MeV ion beam lithography is a direct writing technique capable of producing microfluidic patterns and lab-on-chip devices with straight walls in thick resist films. In this technique a small beam spot of MeV ions is scanned over the resist surface to generate a latent image of the pattern. The microstructures in resist polymer can be then revealed using a chemical developer that removes exposed resist, while leaving unexposed resist unaffected. In our system the size of the rectangular beam spot is programmably defined by two L-shaped tantalum blades with well-polished edges. This allows rapid exposure of entire rectangular pattern elements up to 500 × 500 μm in one step. By combin…
Development of economic MeV-ion microbeam technology at Chiang Mai University
Abstract Developing high technologies but in economic manners is necessary and also feasible for developing countries. At Chiang Mai University, Thailand, we have developed MeV-ion microbeam technology based on a 1.7-MV Tandetron tandem accelerator with our limited resources in a cost-effective manner. Instead of using expensive and technically complex electrostatic or magnetic quadrupole focusing lens systems, we have developed cheap MeV-ion microbeams using programmed L-shaped blade aperture and capillary techniques for MeV ion beam lithography or writing and mapping. The programmed L-shaped blade micro-aperture system consists of a pair of L-shaped movable aperture pieces which are contr…
Programmable proximity aperture lithography with MeV ion beams
A novel MeV ion beam programmable proximity aperture lithography system has been constructed at the Accelerator Laboratory of the University of Jyvaskyla, Finland. This facility can be used to fabricate three dimensional microstructures in thick (<100μm) polymer resist such as polymethylmethacrylate. In this method, MeV ion beams from the 1.7 MV pelletron and K130 cyclotron accelerators are collimated to a beam spot of rectangular shape. This shape is defined by a computer-controlled aperture made of a pair of L-shaped Ta blades which are in close proximity to the sample to minimize the penumbra broadening. Here the authors report on development of the system, the controlling software, the …
Fabrication of a negative PMMA master mold for soft-lithography by MeV ion beam lithography
Abstract In this study, poly(methyl methacrylate) (PMMA) was investigated as a negative resist by irradiation with a high-fluence 2 MeV proton beam. The beam from a 1.7 MV Tandetron accelerator at the Plasma and Beam Physics Research Facility (PBP) of Chiang Mai University is shaped by a pair of computer-controlled L-shaped apertures which are used to expose rectangular pattern elements with 1–1000 μm side length. Repeated exposure of rectangular pattern elements allows a complex pattern to be built up. After subsequent development, the negative PMMA microstructure was used as a master mold for casting poly(dimethylsiloxane) (PDMS) following a standard soft-lithography process. The PDMS chi…
Lithography exposure characteristics of poly(methyl methacrylate) (PMMA) for carbon, helium and hydrogen ions
Abstract Poly(methyl methacrylate) is a common polymer used as a lithographic resist for all forms of particle (photon, ion and electron) beam writing. Faithful lithographic reproduction requires that the exposure dose, Θ, lies in the window Θ 0 ⩽ Θ Θ × 0 , where Θ 0 and Θ × 0 represent the clearing and cross-linking onset doses, respectively. In this work we have used the programmable proximity aperture ion beam lithography systems in Chiang Mai and Jyvaskyla to determine the exposure characteristics in terms of fluence for 2 MeV protons, 3 MeV 4 He 2 + and 6 MeV 12 C 3 + ions, respectively. After exposure the samples were developed in 7:3 by volume propan-2-ol:de-ionised water mixture. At…