0000000000085107
AUTHOR
Igor K. Lednev
A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model
Chaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions. To make progress, experimental models must be developed. We used an archaeal mutant homolog and demonstrated that the His147Arg mutant has impaired oligomeric assembly, ATPase activity, and defective protein homeostasis functions. These results establish for the first time that a human chaperonin gene defect can be reproduced and studied at the molecular level with an archaeal homolog. The major…
Donor-π-Acceptor Species Derived from Functionalised 1,3-Dithiol-2-ylidene Anthracene Donor Units Exhibiting Photoinduced Electron Transfer Properties: Spectroscopic, Electrochemical, X-Ray Crystallographic and Theoretical Studies
Steric interactions between the anthraquinoid core and the 1,3-dithiole and dicyanomethylene groups play a key role in determining the physical properties of system 1. The intramolecular charge transfer properties of this donor–π-acceptor species have been explored and cyclic voltammetric data, X-ray crystal structures and ab initio calculations are also reported.