0000000000086009
AUTHOR
Paola Bonaccorsi
Study of Uptake Mechanisms of Halloysite Nanotubes in Different Cell Lines
Giuseppa Biddeci,1,2 Gaetano Spinelli,1 Marina Massaro,2 Serena Riela,2 Paola Bonaccorsi,3 Anna Barattucci,3 Francesco Di Blasi1 1Institute for Innovation and Biomedical Research (IRIB), CNR, Palermo, 90146, Italy; 2Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Sect. Chemistry, University of Palermo, Palermo, 90128, Italy; 3Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98158, ItalyCorrespondence: Francesco Di BlasiInstitute for Innovation and Biomedical Research (IRIB), CNR, Via Ugo La Malfa 153, Palermo, 90146, ItalyTel +39 0916809514Email francesco.diblasi@irib.cnr.itPurpose: Hal…
Boosting the properties of a fluorescent dye by encapsulation into halloysite nanotubes
Abstract The synthesis of a new biocompatible bichromophoric system (CURBO) was developed, by connecting the skeleton of the naturally occurring curcumin to a BODIPY derivative. The system exhibited an intense fluorescence band with maximum at about 510 nm in organic solvent, while its emission spectra in aqueous solution were more complicated and slightly red-shifted, due to the effect of aggregation for the poor solubility of the dyad. To overcome these problems, the bichomophoric system has been loaded into the halloysite nanotubes (HNT). The HNT/CURBO nanocomposite, suspended in aqueous solution, showed an intensity of emission in the red region of the spectrum higher than the one exhib…
A Curcumin-BODIPY Dyad and Its Silica Hybrid as NIR Bioimaging Probes
In this paper we describe the synthesis of a novel bichromophoric system in which an efficient photoinduced intercomponent energy transfer process is active. The dyad consists of one subunit of curcumin and one of BODIPY and is able to emit in the far-red region, offering a large Stokes shift, capable of limiting light scattering processes for applications in microscopy. The system has been encapsulated in MCM-41 nanoparticles with dimensions between 50 and 80 nm. Both the molecular dyad and individual subunits were tested with different cell lines to study their effective applicability in bioimaging. MCM-41 nanoparticles showed no reduction in cell viability, indicating their biocompatibil…
Synthesis of curcumin derivatives and analysis of their antitumor effects in triple negative breast cancer (TNBC) cell lines
We analyzed antitumor effects of a series of curcumin analogues. Some of them were obtained by reaction of substitution involving the two phenolic OH groups of curcumin while the analogues with a substituent at C-4 was prepared following an original procedure that regards the condensation of benzenesulfenic acid onto the nucleophilic central carbon of the curcumin skeleton. We analyzed cytotoxic effects of such derivatives on two TNBC (triple negative breast cancer) cell lines, SUM 149 and MDA-MB-231, but only three of them showed an IC50 in a lower micromolar range with respect to curcumin. We also focused on these three derivatives that in both cell lines exhibited a higher or at least eq…
Chemical and biological evaluation of cross-linked halloysite-curcumin derivatives
Abstract Well designed and safe nano drug carrier systems are an important tool in biomedical applications. The combination of two or more drugs has been used in medicine both to enhance the therapeutic effect and to decrease the side effects of drugs. Biocompatible halloysite nanotubes, that possess two different surfaces, are a suitable nanomaterial for a simultaneous carrier and release of two drugs that can exert a synergistic effect against cancer cells. In this study, three curcumin derivatives and doxorubicin were loaded by supramolecular and covalent linkage at the lumen and external surface of the halloysite nanotubes. The obtained multifunctional systems were characterized by seve…