0000000000087795

AUTHOR

D. Beck

Cadmium mass measurements between the neutron shell closures at N=50 and 82

International audience; The mass values of the neutron-deficient cadmium isotopes 99−109Cd and of the neutronrich isotopes 114,120,122−124,126,128Cd have been measured using ISOLTRAP. The behavior of the separation energies of the cadmium isotopes from N = 50 to 82 is discussed.

research product

Erratum to: “Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer” [Nucl. Phys. A 763 (2005) 45]

research product

Mass Measurement on the rp-Process Waiting Point 72Kr

The mass of one of the three major waiting points in the astrophysical rp process $^{72}$Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of $\deltam/m = 1.2\times 10–7 (\deltam$ = 8 keV). $^{73,74}$Kr, also needed for astrophysical calculations, were measured with more than 1 order of magnitude improved accuracy. We use the ISOLTRAP masses of $^{72–74}$Kr to reanalyze the role of $^{72}$Kr (T$_{1/2}$ = 17.2 s) in the rp process during x-ray bursts and conclude that $^{72}$Kr is a strong waiting point delaying the burst duration with at least 80\% of its $\beta$-decay half-life.

research product

High-accuracy mass determination of neutron-rich rubidium and strontiumiIsotopes

The penning-trap mass spectrometer ISOLTRAP, installed at the on-line isotope separator ISOLDE at CERN, has been used to measure atomic masses of $^{88,89,90m,91,92,93,94}$Rb and $^{91- 95}$Sr. Using a resolving power of R $\!\scriptstyle\approx$1 million a mass accuracy of typically 10 keV was achieved for all nuclides. Discrepancies with older data are analyzed and discussed, leading to corrections to those data. Together with the present ISOLTRAP data these corrected data have been used in the general mass adjustment.

research product

Mass spectrometry and decay spectroscopy of isomers across the Z=82 shell closure

Recent results from a measurement campaign studying the isomerism in neutron-deficient Tl isotopes are presented. The measurements make use of a nuclear spectroscopy setup coupled to the high-resolution Penning-trap mass spectrometer ISOLTRAP at CERN's radioactive ion-beam facility ISOLDE. The mass values of 190,194Tl are improved and a mass-spin-state assignment is carried out. An additional mass measurement of the grandparent nuclide 198At allows the deduction of the spin-state ordering in 190Tl. As a result, the excitation energies of the isomers in both Tl isotopes are determined for the first time to Eex(194Tl)=260(15) keV and E ex(190Tl)=89(12) keV. Furthermore, this allows anchoring …

research product

Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer

Abstract The atomic masses of 76,77,80,81,86,88 Sr and 124,129,130,131,132 Sn were measured by means of the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. 76 Sr is now the heaviest N = Z nucleus for which the mass is measured to a precision better than 35 keV. For the tin isotopes in the close vicinity of the doubly magic nucleus 132 Sn, mass uncertainties below 20 keV were achieved. An atomic mass evaluation was carried out taking other experimental mass values into account by performing a least-squares adjustment. Some discrepancies between older experimental values and the ones reported here emerged and were resolved. The results of the new adjustment and their impact will be pr…

research product

Recent Exploits of the ISOLTRAP Mass Spectrometer

Abstract The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for bea…

research product

Surveying the N=40 island of inversion with new manganese masses

High-precision mass measurements of neutron-rich 57−66Mn and 61−63Fe isotopes are reported. The new mass surface shows no shell closure at N=40. In contrast, there is an increase of the two-neutron separation energy at N=38. This behavior is consistent with the onset of collectivity due to the occupation of intruder states from higher orbits, in analogy with the well known “island of inversion” around N=20. Our results indicate that the neutron-rich Mn isotopes, starting from 63Mn, are most likely within the new island of inversion. From the new mass surface, we evaluate the empirical proton-neutron interaction and the pairing gap, both playing a significant role in the structural changes i…

research product

Penning-trap mass spectrometry and mean-field study of nuclear shape coexistence in the neutron-deficient lead region

We present a study of nuclear shape coexistence in the region of neutron-deficient lead isotopes. The midshell gold isotopes 180,185,188,190Au (Z=79), the two long-lived nuclear states in 197At (Z=85), and the neutron-rich nuclide 219At were produced by the ISOLDE facility at CERN and their masses were determined with the high-precision Penning-trap mass spectrometer ISOLTRAP. The studied gold isotopes address the trend of binding energies in a region of the nuclear chart where the nuclear charge radii show pronounced discontinuities. Significant deviations from the atomic-mass evaluation were found for 188,190Au. The new trend of two-neutron separation energies is smoother, although it doe…

research product

Space Charge Effects in a Gas Filled Penning Trap

Mass selective buffer gas cooling is a technique used for ions that are stored in a Penning trap. The technique can be applied to all elements and the mass resolving power achieved has proven to be sufficient to resolve isobars. When not only a few but 106 and more ions are stored at the same time, space charge starts to play a dominant role for the spatial distribution. In addition, the observed cyclotron frequency is shifted. This work investigates these effects by numerical calculations.

research product

A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

Abstract A Penning trap ion accumulator, cooler, and buncher for low-energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high-mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about 1 × 10 5 has been achieved. Isobar separation has been demonstrated for radioactive rare-earth ion beams delivered by the ISOLDE on-line mass separator.

research product

Critical-Point Boundary for the Nuclear Quantum Phase Transition NearA=100from Mass Measurements ofKr96,97

Mass measurements of (96,97)Kr using the ISOLTRAP Penning-trap spectrometer at CERN-ISOLDE are reported, extending the mass surface beyond N=60 for Z=36. These new results show behavior in sharp contrast to the heavier neighbors where a sudden and intense deformation is present. We interpret this as the establishment of a nuclear quantum phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy.

research product

Direct mass measurements on neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

The masses of Xe isotopes with 124 A 114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500000 was chosen resulting in an accuracy of m 12 keV for all isotopes investigated. Con icts with existing mass data of several standard deviations were found. peerReviewed

research product

Breakdown of the Isobaric Multiplet Mass Equation atA=33,T=3/2

Mass measurements on ${}^{33,34,42,43}\mathrm{Ar}$ were performed using the Penning trap mass spectrometer ISOLTRAP and a newly constructed linear Paul trap. This arrangement allowed us, for the first time, to extend Penning trap mass measurements to nuclides with half-lives below one second ( ${}^{33}\mathrm{Ar}$: ${T}_{1/2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}174\mathrm{ms}$). A mass accuracy of about ${10}^{\ensuremath{-}7}$ $(\ensuremath{\delta}m\ensuremath{\approx}4\mathrm{keV})$ was achieved for all investigated nuclides. The isobaric multiplet mass equation was checked for the $A\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}33$, $T\phantom{\rule{0ex}{0ex}}=\phantom…

research product

Approaching theN=82shell closure with mass measurements of Ag and Cd isotopes

Mass measurements of neutron-rich Cd and Ag isotopes were performed with the Penning trap mass spectrometer ISOLTRAP. The masses of ${}^{112,114\ensuremath{-}124}$Ag and ${}^{114,120,122\ensuremath{-}124,126,128}$Cd, determined with relative uncertainties between $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}$ and $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}7}$, resulted in significant corrections and improvements of the mass surface. In particular, the mass of $^{124}\mathrm{Ag}$ was previously unknown. In addition, other masses that had to be inferred from $Q$ values of nuclear decays and reactions have now been measured directly. The analysis includes various mass…

research product

Accurate masses of neutron-deficient nuclides close to

Abstract Mass measurements with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN are extended to nonsurface ionizable species using newly developed ion-beam bunching devices. Masses of 179–197Hg, 196,198Pb, 197Bi, 198Po and 203At were determined with an accuracy of 1×10 −7 corresponding to δm≈20  keV. Applying a resolving power of up to 3.7×10 6 ground and isomeric states of 185,187,191,193,197Hg were separated. First experimental values for the isomeric excitation energy of 187,191Hg are obtained. A least-squares adjustment has been performed and theoretical approaches are discussed to model the observed fine structure in the binding energy.

research product

Towards Shorter-Lived Nuclides in ISOLTRAP Mass Measurements

Recently, the applicability of Penning trap mass spectrometry has been extended to nuclides with a half-life of less than one second. The mass of 33Ar(T 1/2 = 174 ms) was measured using the ISOLTRAP spectrometer with an accuracy of 4.2 keV. This measurement provided a stringent test of the Isobaric Multiplet Mass Equation (IMME) at mass number A = 33 and isospin T = 3/2. The fast measurement cycle that shows the way to other measurements of very-short-lived nuclides is presented. Furthermore, the results of the IMME test are displayed.

research product

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

research product

Extension of Penning-trap mass measurements to very short-lived nuclides

Abstract Mass measurements on 33,34,42,43 Ar have been performed at the ISOLTRAP spectrometer. An accuracy of δm ≈4 keV has been achieved for all measured isotopes. With 33 Ar it is the first time that a nuclide with a half-life shorter than one second has been investigated using a Penning trap. This became possible due to the recently installed linear radio-frequency ion-trap system and an improved, faster measurement cycle.

research product

Search for new physics in beta-neutrino correlations with the WITCH spectrometer

The WITCH (Weak Interaction Trap for CHarged particles) experiment is a retardation spectrometer coupled to a Penning trap and measures the beta-neutrino angular correlation via the shape of the recoil energy spectrum. The present form of the Standard Model describes weak processes in terms of vector and axial-vector type interactions, but the possible presence of scalar and tensor interactions is not yet ruled out. The main aim of this experiment is a test of the Standard Model for possible admixture of scalar and tensor currents. (C) 2002 Elsevier Science B.V. All rights reserved.

research product

Trap-assisted decay spectroscopy with ISOLTRAP

Penning traps are excellent high-precision mass spectrometers for radionuclides. The high-resolving power used for cleaning isobaric and even isomeric contaminants can be exploited to improve decay-spectroscopy studies by delivering purified samples. An apparatus allowing trap-assisted decay spectroscopy has been coupled to the ISOLTRAP mass spectrometer at ISOLDE/CERN. The results from studies with stable and radioactive ions show that the setup can be used to perform decay studies on purified short-lived nuclides and to assist mass measurements. (C) 2012 Elsevier B.V. All rights reserved.

research product

Charge radii and electromagnetic moments of At195–211

Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantl…

research product

Mass measurements on unstable Sn and Sr isotopes with the ISOLTRAP mass spectrometer

Direct mass measurements have been performed on the isotopes 76,77,80,81Sr and 129,130,131,132Sn by means of the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. In the case of 76Sr the mass was measured for the first time and an accuracy of about 30 keV was reached (Fig. 1). The masses of the tin isotopes are known for a long time from Q β measurements.

research product

ISOLTRAP Mass Measurements for Weak-Interaction Studies

International audience; The conserved-vector-current (CVC) hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are two fundamental postulates of the Standard Model. While existing data on CVC supports vector current conservation, the unitarity test of the CKM matrix currently fails by more than two standard deviations. High-precision mass measurements performed with the ISOLTRAP experiment at ISOLDE/CERN provide crucial input for these fundamental studies by greatly improving our knowledge of the decay energy of super-allowed beta decays. Recent results of mass measurements on the beta emitters 18Ne, 22Mg, 34Ar, and 74Rb as pertaining to weak-i…

research product

Mass Measurement on therp-Process Waiting PointKr72

With the aim of improving nucleosynthesis calculations, we performed for the first time, a direct high-precision mass measurement on the waiting point in the astrophysical rp-process 72Kr. We used the ISOLTRAP Penning trap mass spectrometer located at ISOLDE/CERN. The measurement yielded a relative mass uncertainty of δm/m = 1.2×10-7. In addition, the masses of 73Kr and 74Kr were measured directly with relative mass uncertainties of 1.0×10-7 and 3×10-8, respectively. We analyzed the role of 72Kr in the rp-process during X-ray bursts using the ISOLTRAP and previous mass values of 72-74Kr.

research product

Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden non-unique $\beta$-decay transition $^{137}\textrm{Xe}(7/2^-)\to\,^{137}\textrm{Cs}(7/2^+)$. The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultra-low background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal-to-background ratio of more than 99-to-1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden non-unique $\bet…

research product

Towards higher accuracy with the ISOLTRAP mass spectrometer

To now the masses of more than hundred unstable isotopes have been determined with the ISOLTRAP mass spectrometer installed at ISOLDE/CERN. Typically a resolving power of mΔm ≈ 1 × 106 was used and the mass determinations were assigned an accuracy of δmm ≈ 1 × 10−7. We show that with improvements to ISOLTRAP and refinements of the experimental technique an accuracy of δmm ≈ 3 × 10−8 can be obtained.

research product