0000000000089471

AUTHOR

P. Vaz

showing 63 related works from this author

New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels: Preliminary results in the RRR

2016

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70’s, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its “High Priority Request List” and its report WPEC-26 that the capture cross section of 242Pu…

Nuclear reactionnTOFQC1-999Nuclear engineeringContext (language use)CERN nTOFNeutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyPhysics and Astronomy (all)Nuclear reactorsReactors nuclears0103 physical sciencesCERNNeutron cross sectionNuclear Physics - ExperimentNeutronddc:530242Pu neutron capture010306 general physicsMOX fuelNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Fissile materialCross section:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionSpent nuclear fuelNeutron temperature13. Climate actionneutron time-of-flight measurement
researchProduct

Measurement of the lifetime of tau-lepton

1996

The tau lepton lifetime is measured with the L3 detector at LEP using the complete data taken at centre-of-mass energies around the Z pole resulting in tau_tau = 293.2 +/- 2.0 (stat) +/- 1.5 (syst) fs. The comparison of this result with the muon lifetime supports lepton universality of the weak charged current at the level of six per mille. Assuming lepton universality, the value of the strong coupling constant, alpha_s is found to be alpha_s(m_tau^2) = 0.319 +/- 0.015(exp.) +/- 0.014 (theory). The tau lepton lifetime is measured with the L3 detector at LEP using the complete data taken at centre-of-mass energies around the Z pole resulting in τ τ =293.2 ± 2.0 (stat) ± 1.5 (syst) fs . The c…

COLLISIONSNuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOPAIR PRODUCTIONElectron–positron annihilationFOS: Physical sciencesElementary particleddc:500.201 natural sciences7. Clean energyResonance (particle physics)JET FRAGMENTATIONDECAYSHigh Energy Physics - ExperimentNuclear physicsParticle decayHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SILICON MICROVERTEX DETECTORPRECISE MEASUREMENTLimit (mathematics)QCD ANALYSIS010306 general physicsL3 EXPERIMENTCoupling constantPhysicsMuonAnnihilationTEST BEAME+E-PHYSICS010308 nuclear & particles physicsALPHA(S)High Energy Physics::PhenomenologyDetectorPair productionSPECTRAL FUNCTIONSComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::ExperimentParticle Physics - ExperimentLeptonNuclear and Particle Physics Proceedings
researchProduct

7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN

2017

One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…

AstrofísicanTOFQC1-999chemistry.chemical_elementNeutronAstrophysics01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Big Bang nucleosynthesisNucleosynthesisCERN0103 physical sciencesNuclear astrophysicsAstrophysics::Solar and Stellar AstrophysicsNeutron010306 general physicsNuclear ExperimentAstrophysics::Galaxy Astrophysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsPhysicsAlphaLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsStarschemistryLithiumHaloNucleosynthesisNucleosíntesi
researchProduct

A search for neutral higgs particles in Z$^0$ decays

1992

Abstract The search in DELPHI data for neutral Higgs bosons is described. No candidate for the Standard Model Higgs is seen in Z0 decays to H 0 ν ν , H 0 μ + μ − or H0τ+τ− after selections that proved efficient for finding simulated H0. One remaining candidate for Z0 → H0e+e− is consistent with background. Together with our earlier studies, these results restrict the H0 mass to be above 38 GeV/c2 at the 95% confidence level. No signal is found for decays of Minimal Supersymmetric Standard Model neutral Higgs bosons to τ+τ−. Limits are obtained for their decays to produce four jets.

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationSTANDARD MODEL01 natural sciencesLower limitStandard ModelNuclear physicsPHYSICSLIMITS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsBosonPhysicsMASS SCALAR BOSONLIGHT SCALAR010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyZ0 DECAYE+E COLLISIONSSupersymmetrySUPERSYMMETRIC MODELSLEPNUCLEAR DECAYHiggs bosonHigh Energy Physics::ExperimentFísica nuclearMASS SCALAR BOSON; Z0 DECAY; SUPERSYMMETRIC MODELS; STANDARD MODEL; E+E COLLISIONS; NUCLEAR DECAY; LIGHT SCALAR; LIMITS; LEP; PHYSICSParticle Physics - ExperimentMinimal Supersymmetric Standard Model
researchProduct

Search for the t and b' quarks in hadronic decays of the Z0 boson

1990

We present a search for the third generation up type quark t and a possible fourth down type quark b' in hadronic Z0 decays observed in DELPHI at the LEP collider. For any scenario with a decay through the charged current or into a charged Higgs with a mass at least 6 GeV/c2 below the t and 3 GeVc2 below the b' mass, we set a lower limit for the t quark mass at 44.0 GeV/c2 and for the b' mass at 44.5 GeV/c2. For specific scenarios the mass limits are slightly higher, e.g. for charged current decays the limits are 44.5 and 45.0 GeV/c2 respectively, where all limits are given at a 95% confidence level. © 1990.

QuarkNuclear and High Energy PhysicsTop quarkParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]Electron–positron annihilationHadron01 natural sciences7. Clean energylaw.inventionNuclear physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment010306 general physicsColliderCharged currentBosonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPhysique des particules élémentairesHiggs bosonHigh Energy Physics::ExperimentParticle Physics - ExperimentPhysics Letters B
researchProduct

PRODUCTION CHARACTERISTICS OF K-0 AND LIGHT MESON RESONANCES IN HADRONIC DECAYS OF THE Z(0)

1995

An analysis of inclusive production of K0and the meson resonances K*±(892), ρ0(770), f0(975) and f2(1270) in hadronic decays of the Z0is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0mesons, 0.712±0.067 K*±(892) and 1.21±0.15ρ0(770) per hadronic Z0decay. The average multiplicities of f0(975) for scaled momentum, xp, in the range 0.05≤xp≤0.6 and of f2(1270) for 0.05≤xp≤1.0 are 0.098±0.016 and 0.170±0.043 respectively. The f0(975) and ρ0(770)xp-spectra have similar shapes. The f2(1270)/ρ0(770) ratio increases with xp. The average multiplicities…

Particle physicsMesonPhysics and Astronomy (miscellaneous)LUND MONTE-CARLOElectron–positron annihilationHadron01 natural sciencesJET FRAGMENTATION250 GEV/CPartícules (Física nuclear)Nuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]multiplicityENERGY REGION010306 general physicsParton showerEngineering (miscellaneous)Detectors de radiacióDELPHI. inclusive production; K0 meson; multiplicity; MontecarloPhysicsRange (particle radiation)Momentum (technical analysis)010308 nuclear & particles physicsMultiplicity (mathematics)E+E-ANNIHILATIONINCLUSIVE PRODUCTIONZ0 DECAYSMontecarloParticle accelerationLUND MONTE-CARLO; E+E-ANNIHILATION; INCLUSIVE PRODUCTION; JET FRAGMENTATION; Z0 DECAYS; P INTERACTIONS; VECTOR-MESONS; ENERGY REGION; 250 GEV/C; 360 GEV/C360 GEV/CP INTERACTIONSK0 mesonDELPHI. inclusive productionVECTOR-MESONSParticle Physics - Experiment
researchProduct

The n_TOF facility: Neutron beams for challenging future measurements at CERN

2016

The CERN n TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental prog…

AstrofísicanTOF[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]QC1-999Nuclear TheoryNeutronAstrophysics01 natural sciences7. Clean energylaw.inventionNuclear physicsPhysics and Astronomy (all)Neutron fluxlaw0103 physical sciencesCERNNuclear astrophysicsNeutronSpallation010306 general physicsNuclear ExperimentPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear dataNuclear reactorNeutron radiationAccelerators and Storage Rings3. Good health13. Climate action
researchProduct

Evidence for B$^{0}_{s}$ meson production in Z$^0$ decays

1992

Seven unambiguous events out of a sample of 270 000 Z0 decays, contain in tile same jet a D(s) meson and a muon at large transverse momentum relative to the et axis. These events are direct evidence for B(s)0 meson production in hadronic Z0 decays. The production rate of these events, relative to all hadronic Z0 decays is ( 18 +/- 8) x 10(-5) this number including the relevant branching fractions of the B(s)0 and D(s). The value of the B(s)0 meson lifetime relative to the average B meson lifetime is measured to be 0.8 +/- 0.4.

Nuclear and High Energy PhysicsParticle physicsMeson productionMesonLUND MONTE-CARLOElectron–positron annihilationNuclear TheoryHadron01 natural sciencesCOLLIDERNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]B mesonNuclear Experiment010306 general physicsPhysicsMuonLUND MONTE-CARLO; Z0 DECAYS; COLLIDER010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyZ0 DECAYSTransverse momentumFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentProduction rate
researchProduct

A Search for Sleptons and Gauginos in Z0 Decays

1990

Using a data sample corresponding to 10 000 hadronic Z0 decays, we have searched for the production of sleptons and gauginos in the two-prong decays of Z0. No candidate remains after straightforward selections. For neutralinos, we use selection methods developed in our previous search for neutral Higgs particles. The negative results are translated into improved mass limits and parameter constraints on the minimal supersymmetric extension of the standard model.

PhysicsParticle physicsNuclear and High Energy Physics010308 nuclear & particles physicsElectron–positron annihilationHadronHigh Energy Physics::Phenomenology01 natural sciencesStandard Model0103 physical sciencesHiggs bosonPhysique des particules élémentairesFísica nuclearHigh Energy Physics::ExperimentSelection method010306 general physicsParticle Physics - Experiment
researchProduct

Neutron capture cross section measurements for nuclear astrophyisics at CERN n_TOF

2005

A series of neutron capture cross section measurements of interest to nuclear astrophysics have been recently performed at n_TOF, the neutron spallation source operating at CERN. The low repetition frequency of the proton beam driver, the extremely high instantaneous neutron flux, and the low background conditions in the experimental area are optimal for capture cross section measurements on low-mass or radioactive samples. An overview of the measurements performed during the two experimental campaigns in 2002 and 2003 is presented with special emphasis on the measurement of the capture cross sections of the Os isotopes relevant for the cosmochronology based on the Re/Os clock. http://www.s…

Nuclear and High Energy PhysicsAstrofísica nuclearNeutron cross sectionsProtonAstrophysics::High Energy Astrophysical PhenomenaNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNeutrons -- SeccionsNuclear physicsCross section (physics)Neutron flux0103 physical sciencesNeutron cross sectionNuclear astrophysicsSpallationNeutron010306 general physicsNuclear ExperimentPhysicsNeutronsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsRadioactivityPhysics::Accelerator PhysicsNuclear astrophysicsFísica nuclear
researchProduct

Search for heavy charged scalars in Z$^0$ Decays

1990

Using a sample of Z0's corresponding to about 12 000 events, we have searched for the production of charged scalars, primarily charged Higgs particles, decaying into c̄scs̄, τν+jets, and τντν. The average detection efficiency is 20%. No candidate was found in the leptonic modes. Masses in the range up to 30-36 GeV/c2 are excluded, extending the mass domain covered by previous e+e- machines.

PhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)Internet010308 nuclear & particles physicsElectron–positron annihilation01 natural sciencesteachingNuclear physics0103 physical sciencesDomain (ring theory)course packsPhysique des particules élémentairesHiggs bosonComputingMilieux_COMPUTERSANDEDUCATIONeditors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentFísica nuclear010306 general physicsParticle Physics - Experiment
researchProduct

A Measurement of the Bbbar Forward-backward Asymmetry Using the Semileptonic Decay Into Muons

1992

PhysicsQuarkSemileptonic decayNuclear and High Energy PhysicsParticle physicsMuonmedia_common.quotation_subjectHadronElectroweak interactionHigh Energy Physics::PhenomenologyWeinberg angleBottom quarkAsymmetryNuclear physicsPhysique des particules élémentairesComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentFísica nucleardigital documentAstrophysics::Earth and Planetary AstrophysicsNuclear Experimentmedia_common
researchProduct

J / psi production in the hadronic decays of the Z.

1994

Abstract: J/psi mesons have been reconstructed from their decay to mu(+)mu(-) and e(+)e(-), using the data collected by the DELPHI experiment during 1991 and 1992 at the LEP collider. From about 1 million hadronic Z decays 153 +/- 17 J/psi were found, 5.4 +/- 2.3 psi' were obtained in the channel J/psi(--> mu(+)mu(-))pi(+)pi(-) and 6.4 +/- 2.7 chi(c) in the channel J/psi(--> mu(+)mu(-))gamma. As the dominant source of J/psi mesons is from b quarks, the following branching ratios: Br(b-->J/psi X) = (1.12 +/- 0.12 (stat.) +/- 0.10 (syst.))%, Br(b --> psi' X) = (0.48 +/- 0.22 (stat.) +/- 0.10 (syst.))%, Br(b-->chi(cl) X) = (1.4 +/- 0.6 (stat.)(-0.2)(+0.4) (syst.))% were measured. From the prop…

Nuclear and High Energy PhysicsParticle physicsMesonLUND MONTE-CARLO; B-MESON DECAYS; HEAVY-QUARKONIUM; JET FRAGMENTATION; TRANSITIONS; CHARMONIUM; PHYSICS; SYSTEMS; BOSONLUND MONTE-CARLOElectron–positron annihilationHadronTRANSITIONSAstrophysics::Cosmology and Extragalactic AstrophysicsB meson01 natural sciencesb taggingJET FRAGMENTATIONPartícules (Física nuclear)law.inventionNuclear physicsPHYSICSB-MESON DECAYSlawSYSTEMSCHARMONIUM0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]B mesonNuclear Experiment010306 general physicsColliderBosonDELPHIHEAVY-QUARKONIUMPhysics010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyZ0 decayBOSONb-taggingHigh Energy Physics::ExperimentDELPHI; B meson; b tagging; Z0 decayParticle Physics - Experiment
researchProduct

Measurement of inclusive production of light meson resonances in hadronic decays of the Z0

1993

A study of inclusive production of the meson resonances ρ0, K*0 (892), f{hook}0 (975) and f{hook}2 (1270) in hadronic decays of the Z0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ0 0.64 ± 0.24 for the K*0 (892), 0.10 ± 0.04 for the f{hook}0 (975) in the momentum range p > 0.05pbeam (xp > 0.05) and 0.11 ± 0.05 for the f{hook}2 (1270) for xp > 0.1. These values and the corresponding differential cross sections ( 1 σhadr) dσ dxp for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The f{hook}2 (1270) production is overestimated by HERWIG but its xp-shape is correctly reproduced. T…

PhysicsNuclear and High Energy PhysicsParticle physicsMesonLUND MONTE-CARLO010308 nuclear & particles physicsElectron–positron annihilationHadronE+E-ANNIHILATION01 natural sciencesJET FRAGMENTATIONK+P INTERACTIONSPHYSICSNuclear physicsGEV/C0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RHO0Física nuclearMultiplicity (chemistry)010306 general physicsParticle Physics - ExperimentLUND MONTE-CARLO; E+E-ANNIHILATION; K+P INTERACTIONS; JET FRAGMENTATION; PHYSICS; GEV/C; RHO0Physics Letters B
researchProduct

A comparison of jet production rates on the Z0 resonance to perturbative QCD

1990

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e+e- storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(αs 2) QCD matrix element calculations and the QCD scale parameter ΛMS is determined for different parametrizations of the renormalization scale μ2. Including all uncertainties our result is αs(MZ 2)=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.] .

PhysicsQuantum chromodynamicsParticle physicsNuclear and High Energy Physics010308 nuclear & particles physicsElectron–positron annihilationHadronPerturbative QCDJet (particle physics)01 natural sciences7. Clean energyResonance (particle physics)Nuclear physicsRenormalization0103 physical sciencesPhysique des particules élémentairesHigh Energy Physics::Experiment010306 general physicsStorage ringParticle Physics - Experiment
researchProduct

New reaction rates for the destruction of $^7$Be during big bang nucleosynthesis measured at CERN/n_TOF and their implications on the cosmological li…

2019

New measurements of the7Be(n,α)4He and7Be(n,p)7Li reaction cross sections from thermal to keV neutron energies have been recently performed at CERN/n_TOF. Based on the new experimental results, astrophysical reaction rates have been derived for both reactions, including a proper evaluation of their uncertainties in the thermal energy range of interest for big bang nucleosynthesis studies. The new estimate of the7Be destruction rate, based on these new results, yields a decrease of the predicted cosmological7Li abundance insufficient to provide a viable solution to the cosmological lithium problem.

PhysicsRange (particle radiation)Large Hadron Collidern_TOF 7Be big bang nucleosynthesis cosmological lithium problem010308 nuclear & particles physicsPhysicsQC1-999chemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesReaction rateNuclear physicsBig Bang nucleosynthesischemistry13. Climate action0103 physical sciencesThermalNeutronLithiumNuclear Physics - Experiment010306 general physicsNuclear Experiment
researchProduct

A measurement of the tau lifetime

1993

The tau lepton lifetime is measured using four different methods with the DELPHI detector. Three measurements using one prong decays are combined, accounting for correlations, resulting in tau(tau) = 298 +/- 7 (stat.) +/- 4 (syst.) fs while the decay length distribution of three prong decays gives tau(tau) = 298 +/- 13 (stat.) +/- 5 (syst.) fs. The combined result is tau(tau) = 298 +/- 7 fs. The ratio of the Fermi coupling constant from tau decay relative to that from muon decay is found to be 0.985 +/- 0.013, compatible with lepton universality.

PhysicsCoupling constantParticle physicsArgusNuclear and High Energy PhysicsMuonPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsElectron–positron annihilation01 natural sciences7. Clean energyNuclear physics0103 physical sciencesDecay lengthLEPTONS[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentFísica nuclearCombined result010306 general physicscomputerParticle Physics - ExperimentFermi Gamma-ray Space TelescopeLeptoncomputer.programming_language
researchProduct

Be7(n,α)He4Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN

2016

The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been…

Nuclear reactionPhysics010308 nuclear & particles physicsGeneral Physics and Astronomychemistry.chemical_elementAlpha particleNeutron radiation7. Clean energy01 natural sciencesNeutron temperatureNuclear physicsBig Bang nucleosynthesischemistry13. Climate actionNucleosynthesis0103 physical sciencesNeutronLithiumNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Neutron cross section measurements at n_TOF for ADS related estudies

2005

A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main res…

HistoryAstrofísica nuclearNeutron cross sectionsNuclear transmutationNuclear engineeringNuclear TheoryNuclear physicsNeutrons -- SeccionsEducationNuclear physicsRadiació ionitzant -- Mesures de seguretatRadioactive wastesNeutron cross sectionNuclear astrophysicsNeutronNuclear ExperimentPhysicsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]Time-of-flight mass spectrometryRadioactive wasteNeutron radiationWaste disposalResidus radioactiusComputer Science ApplicationsShielding (Radiation)Physics::Accelerator PhysicsNuclear astrophysicsFísica nuclearNucleon
researchProduct

Neutron capture cross section measurement ofU238at the CERN n_TOF facility in the energy region from 1 eV to 700 keV

2017

The aim of this work is to provide a precise and accurate measurement of the U238(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the u…

Physics010308 nuclear & particles physicsGamma rayNuclear dataScintillator7. Clean energy01 natural sciencesResonance (particle physics)Nuclear physicsNeutron captureNuclear reactor core0103 physical sciencesNeutron cross sectionNeutron010306 general physicsPhysical Review C
researchProduct

The Nuclear astrophysics program at n_TOF (CERN)

2017

An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neut…

Nuclear reactionAstrofísicaAstrophysics and AstronomyCross-sectionnTOFQC1-999Astrophysics::High Energy Astrophysical PhenomenaNeutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Astrophysics01 natural sciences7. Clean energyn_TOF nuclear astrophysics CERNNuclear physicsPhysics and Astronomy (all)Stellar nucleosynthesisBig Bang nucleosynthesisNucleosynthesis0103 physical sciencesCERNNuclear astrophysicsAstrophysics::Solar and Stellar AstrophysicsNuclear Physics - ExperimentNeutronNeutron induced nuclear reactions010306 general physicsNuclear ExperimentAstrophysics::Galaxy AstrophysicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]Neutrons:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionNeutron capture13. Climate actionNeutron sourceAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]NucleosynthesisNucleosíntesi
researchProduct

Searches for heavy neutrinos from Z decays

1992

We have searched for possible fourth family heavy neutrinos, pair produced in Z0 decays, in a sample of about 112 000 hadronic Z0 final states collected with the DELPHI detector. For all mixing matrix elements we exclude a new Dirac neutrino lighter than 44.5 GeV at a 95% confidence level, if the neutrino couples to the electron or muon family, and lighter than 44.0 GeV, if the neutrino couples to the tau family. Depending on the values of the mixing element and to which lepton family the neutrino couples, we obtain mass limits up to 46.2 GeV. For all mixing matrix elements we exclude a new Majorana neutrino lighter than 39.0 GeV, if it couples to the electron or the muon family, and lighte…

Z-PEAK; LEPTONS; RESONANCE; LIMITS; QUARKSNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaElectron–positron annihilationHadron01 natural sciencesNuclear physicsLIMITS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QUARKSNuclear Experiment010306 general physicsMixing (physics)PhysicsMuon010308 nuclear & particles physicsDirac (video compression format)High Energy Physics::PhenomenologyRESONANCEZ-PEAKMAJORANALEPTONSPhysique des particules élémentairesFísica nuclearHigh Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentLepton
researchProduct

Search For Light Neutral Higgs Particles Produced In Z0-decays

1990

A search for the neutral Higgs boson in Z0-decays has been performed using the DELPHI detector at the Large Electron Positron collider (LEP) at CERN. We looked for the decay of Z0 into a neutral Higgs particle and a pair of fermions. No events fulfilled the criteria for H0-production. Our results, which are based on an integrated luminosity of 530 nb-1, exclude a minimal Standard Model Higgs boson with a mass in the range 210 MeV/c2 to 14 GeV/c2 at 95% confidence level.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderLuminosity (scattering theory)010308 nuclear & particles physicsElectron–positron annihilationHigh Energy Physics::PhenomenologyElementary particleFermion01 natural sciences7. Clean energyStandard ModelNuclear physics0103 physical sciencesLarge Electron–Positron ColliderPhysique des particules élémentairesHiggs boson[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Física nuclearHigh Energy Physics::Experiment010306 general physicsParticle Physics - Experiment
researchProduct

The 33S(n,α)30Si cross section measurement at n TOF-EAR2 (CERN): From 0.01 eV to the resonance region

2017

The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT).

Nuclear reactionnTOFNeutron therapyQC1-999chemistry.chemical_elementNeutron01 natural sciencesResonance (particle physics)Nuclear physicsCross section (physics)Physics and Astronomy (all)0103 physical sciencesCERNNeutronddc:530010306 general physicsBoronPhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Range (particle radiation)Large Hadron Collidercross sectionReaccions nuclears:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionNeutron capturechemistryNuclear reactions
researchProduct

PRODUCTION-RATE AND DECAY LIFETIME MEASUREMENTS OF B(S)0 MESONS AT LEP USING D(S) AND PHI MESONS

1994

The study of the properties of inclusive production of Ds mesons and of events in which a φ{symbol} and a muon are present in the same jet provides two independent measurements of the probability, fs w, for a heavy quark to hadronize into a strange B or D meson. The data sample analysed corresponds to 243,000 hadronic Z0 decays. The combined value of these measurements is fs w=0.19±0.06±0.08. From the flight distance distributions of Ds and of (φ{symbol}-lepton) secondary vertices, with the lepton emitted at high transverse momentum relative to the jet axis, two values are obtained for the Bs 0 meson lifetime. Combining these measurements with a previous result based on the study of Ds-μ ev…

QuarkParticle physicsPhysics and Astronomy (miscellaneous)MesonLUND MONTE-CARLOElectron–positron annihilationNuclear TheoryJet (particle physics)01 natural sciencesJET FRAGMENTATIONNuclear physicsPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]B mesonZ0010306 general physicsNuclear ExperimentEngineering (miscellaneous)PhysicsMuonB-MESONS010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyLUND MONTE-CARLO; JET FRAGMENTATION; B-MESONS; PHYSICS; Z0High Energy Physics::ExperimentFísica nuclearParticle Physics - ExperimentProduction rateLepton
researchProduct

Measurement of the Pu-242(n,gamma) cross section from thermal to 500 keV at the Budapest research reactor and CERN n_TOF-EAR1 facilities

2019

The design and operation of innovative nuclear systems requires a better knowledge of the capture and fission cross sections of the Pu isotopes. For the case of capture on 242Pu, a reduction of the uncertainty in the fast region down to 8-12% is required. Moreover, aiming at improving the evaluation of the fast energy range in terms of average parameters, the OECD NEA High Priority Request List (HPRL) requests high-resolution capture measurements with improved accuracy below 2 keV. The current uncertainties also affect the thermal point, where previous experiments deviate from each other by 20%. A fruitful collaboration betwen JGU Mainz and HZ Dresden-Rossendorf within the EC CHANDA project…

PhysicsLarge Hadron ColliderIsotope010308 nuclear & particles physicsFissionPhysicsQC1-999n_TOF 242Pu neutron capture neutron time of flight[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyResonance (particle physics)Nuclear physicsStack (abstract data type)0103 physical sciencesNeutronResearch reactorNuclear Physics - ExperimentNeutron activation analysis010306 general physics
researchProduct

Search for pair production of neutral Higgs bosons in Z$^0$ decays

1990

The pair production of the lightest scalar Higgs boson, h, and a pseudoscalar Higgs boson, A, was searched for in a data sample containing 10 000 hadronic Z0 decays. The search involved both leptonic and purely hadronic decay channels of each Higgs boson. No signal was found, and limits on the Higgs boson masses, in the framework of the minimal supersymmetric extension of the standard model, ar reported up to 35 GeV/c2 at 95% CL, for both tan β > 1 and tan β < 1, where tan β is the ratio of the vacuum expectation values of the two Higgs doublets.

Nuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]Electron–positron annihilationHigh Energy Physics::Lattice01 natural sciencesNuclear physicssymbols.namesake0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsBosonPhysicsCondensed Matter::Quantum Gases010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySupersymmetryScalar bosonPseudoscalarPair productionPhysique des particules élémentairessymbolsHiggs bosonHigh Energy Physics::ExperimentFísica nuclearHiggs mechanismParticle Physics - Experiment
researchProduct

A study of intermittency in Hadronic Z$^0$ Decays

1990

The correlations in rapidity in hadron production from e+e- annihilation near the Z0 resonance were studied by means of the method of factorial moments, using data taken with the DELPHI detector at LEP. The parton shower hadronization model was found to be in quantitative agreement with the data, in contrast with previous results at lower energies. © 1990.

Nuclear and High Energy PhysicsParticle physicsHadron7. Clean energy01 natural sciencesResonance (particle physics)hypertextlaw.inventionauthorNuclear physicslawIntermittency0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RapidityNuclear Experiment010306 general physicsParton showerComputingMilieux_MISCELLANEOUSPhysicsAnnihilation010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadronizationlectorMoment (physics)Physique des particules élémentairesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experimenttext
researchProduct

Nuclear Data for the Thorium Fuel Cycle and the Transmutation of Nuclear Waste

2016

Neutron-induced reaction cross sections play an important role in a wide variety of research fields, ranging from stellar nucleosynthesis, the investigation of nuclear level density studies, to applications of nuclear technology, including the transmutation of nuclear waste, accelerator-driven systems, and nuclear fuel cycle investigations. Simulations of nuclear technology applications largely rely on evaluated nuclear data libraries. These libraries are based both on experimental data and theoretical models. An outline of experimental nuclear data activities at CERN’s neutron time-of-flight facility, n_TOF, will be presented.

Nuclear fuel cycleNuclear technologyStellar nucleosynthesisNuclear transmutationChemistryNuclear engineeringNuclear TheoryRadioactive wasteNuclear dataNeutronNuclear ExperimentThorium fuel cycle
researchProduct

Measurement of the n-TOF beam profile with a micromegas detector

2004

A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the 6Li(n,[alpha])t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n_TOF facility. http://www.sciencedirect.com/science/artic…

Elastic scatteringPhysicsNuclear and High Energy PhysicsArgonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaBeam profileNuclear Theorychemistry.chemical_elementMicroMegas detectorNUCLEAR PHYSICSNeutron radiationNuclear physicsNeutron capturechemistryNEUTRON BEAMSNeutron cross sectionMICROMEGAS DETECTORNeutron detectionNeutron beam profilerNeutronNuclear ExperimentInstrumentationMicromegas
researchProduct

The 236U neutron capture cross-section measured at the n TOF CERN facility

2016

International audience; The $^{236}$U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the $^{236} \text{U}(n, \gamma)$ reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C$_6$D$_6$ detectors, employing the total energy deposited method, and a 4$\pi$ total absorption calorimeter (TAC), made of 40 BaF$_2$ crystals. The t…

Nuclear reactionnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Cross section (physics)0103 physical sciencesCERNNeutron cross sectionNuclear Physics - Experimentddc:530Neutron010306 general physicsAbsorption (electromagnetic radiation)PhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]IsotopeCross sectionReaccions nuclears:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsResonanceNuclear reactionCalorimeter13. Climate actionNuclear reactions
researchProduct

A precise measurement of the Z resonance parameters through its hadronic decays

1990

A measurement of the cross section for e+e-→ hadrons using 11 000 hadronic decays of the Z boson at ten different center-of-mass energies is presented. A three-parameter fit gives the following values for the Z mass MZ, the total width ΓZ, the product of the electronic and hadronic partial widths ΓeΓh, and the unfolded pole cross section σ0: MZ = 91.171 ± 0.030 (stat.) ± 0.030 (beam) GeV, ΓZ = 2.511 ± 0.065 GeV, ΓeΓh = 0.148 ± 0.006 (stat.) ± 0.004 (syst.) GeV2, σ0 = 41.6 ± 0.7 (stat.) ± 1.1 (syst.) nb, Good agreement with the predictions of the standard model is observed. From a two-parameter fit the number of massless neutrino generations is found to be Nv = 2.91 ± 0.26. Thus the hypothes…

Nuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]pragmatismtruthElectron–positron annihilationHadronfictionpossible worlds01 natural sciencesResonance (particle physics)webStandard ModelRDFNuclear physicsCross section (physics)semantic webesthetics0103 physical sciencesmemetic[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear Experimentmetalanguagemodal logicPhysicsInternet010308 nuclear & particles physicstrust3. Good healthMassless particlePhysique des particules élémentairesHigh Energy Physics::ExperimentFísica nuclearNeutrinoBeam (structure)Particle Physics - Experiment
researchProduct

High precision measurement of the radiative capture cross section of 238U at the n_TOF CERN facility

2016

The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n-TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented. © The Authors, published by EDP Sciences, 2017.

Nuclear reactionnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsCross section (physics)Physics and Astronomy (all)Nuclear reactorsReactors nuclears0103 physical sciencesThermalCERNNeutronddc:530Nuclear Physics - Experiment010306 general physicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsRange (particle radiation)Large Hadron Collider:Física [Àrees temàtiques de la UPC]Cross section010308 nuclear & particles physicsPhysicsRadiative captureNuclear energyNuclear reactionEnergia nuclearEnergy (signal processing)
researchProduct

Fission fragment angular distribution of 232Th(n,f) at the CERN n TOF facility

2014

The angular distribution of fragments emitted in neutron-induced fission of 232Th was measured in the white spectrum neutron beam at the n_TOF facility at CERN. A reaction chamber based on Parallel Plate Avalanche Counters (PPAC) was used, where the detectors and the targets have been tilted 45 degrees with respect to the neutron beam direction in order to cover the full angular range of the fission fragments. A GEANT4 simulation has been developed to study the setup efficiency. The data analysis and the preliminary results obtained for the 232Th(n,f) between fission threshold and 100 MeV are presented here.

PhysicsNuclear reaction:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsNuclear and High Energy PhysicsLarge Hadron Collidercross sectionFragment (computer graphics)FissionPhysics::Instrumentation and DetectorsNuclear TheoryTOFNuclear data232Th; n_TOF; fission fragments; angular distributionNuclear physicsCross section (physics)Angular distributionneutronPhysics::Accelerator PhysicsfissionNeutronNuclear Experimentnuclear reactions
researchProduct

Radiative neutron capture on Pu242 in the resonance region at the CERN n_TOF-EAR1 facility

2018

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluat…

PhysicsNuclear fuelFissile material010308 nuclear & particles physicschemistry.chemical_elementUranium01 natural sciences7. Clean energySpent nuclear fuelNeutron temperatureNuclear physicsNeutron capturechemistry13. Climate action0103 physical sciencesNeutron010306 general physicsMOX fuelPhysical Review C
researchProduct

The measurement programme at the neutron time-of-flight facility n_TOF at CERN

2016

Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n TOF has produced a considerabl…

EngineeringNuclear transmutationQC1-999Nuclear engineering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physicsPhysics and Astronomy (all)0103 physical sciences:Física::Electromagnetisme [Àrees temàtiques de la UPC]ddc:530Nuclear Physics - ExperimentNeutron010306 general physicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Large Hadron Collider010308 nuclear & particles physicsbusiness.industryPhysicsNuclear dataRadioactive wasteNuclear technologyBeamlineCriticalitybusinessEPJ Web of Conferences
researchProduct

Study of the leptonic decays of the Z0 boson

1990

Measurements are presented of the cross section ratios Rℓ = σℓ(e+e-→ℓ+ℓ -)/σhh(e+e-→hadrons) for ℓ = e, μ and τ using data taken from a scan around the Z0. The results are Re = (5.09±0.32±0.18)%, Rμ = (4.96±0.35±0.17)% and Rτ,=(4.72±0.38± 0.29)% where, for the ratio Re, the t-channel contribution has been subtracted. These results are consistent with the hypothesis of lepton universality and test this hypothesis at the energy scale s ∼ 8300 GeV2. The absolute cross sections σℓ(e+e-→ℓ +ℓ-) have also been measured. From the cross sections the leptonic partial widths Γe = (83.2±3.0±2.4) MeV, (ΓeΓμ) 1/2=(84.6±3.0±2.4) MeV and (ΓeΓτ) 1/2=(82.6±3.3±3.2) MeV have been extracted. Assuming lepton un…

PhysicsNuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]010308 nuclear & particles physicsElectron–positron annihilationHadronWidth ratio01 natural sciences7. Clean energyNuclear physics0103 physical sciencesPhysique des particules élémentaires[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino010306 general physicsParticle Physics - ExperimentLeptonBosonPhysics Letters B
researchProduct

Measurement of the 151Sm n,gamma 152Sm cross section at n_TOF

2005

The 151 Sm(n, γ ) 152 Sm cross section, which is important for the interpretation of the 151 Sm branching as an s -process thermometer, was measured from 1 eV up to 1 MeV at the innovative n_TOF facility at CERN. Based on these data, the Maxwellian-averaged cross section at k T = 30  keV is found to be 3100±160 mb. This value can be used to constrain the thermodynamical conditions in Asymptotic Giant Branch (AGB) stars during He-shell burning.

PhysicsNuclear reactionNeutronsNuclear and High Energy Physics:Física [Àrees temàtiques de la UPC]Branching fraction[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Giant star01 natural sciencesNeutrons--CaptureNuclear physicsStarsNucleosynthesis0103 physical sciencesAsymptotic giant branchAstrophysics::Solar and Stellar Astrophysics010306 general physicss-processNuclear Experiment010303 astronomy & astrophysicsDimensionless quantity
researchProduct

Characterization and First Test of an i-TED Prototype at CERN n_TOF

2018

International audience; Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C$_{6}$ D$_{6}$ detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton princ…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaDetectorGamma rayi-TED n_TOF characterizationNeutron radiationRadiation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]030218 nuclear medicine & medical imagingNuclear physics03 medical and health sciencesNeutron capture0302 clinical medicineNeutron cross sectionNeutronGamma spectroscopy[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]iTED n_TOF neutron
researchProduct

Measurement of the 241Am neutron capture cross section at the n-TOF facility at CERN

2016

New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241 Am(n,γ) cross section at the n TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental …

Nuclear reactionNuclear transmutationnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Cross section (physics)Nuclear reactorsReactors nuclears0103 physical sciencesCERNNeutron cross sectionNuclear Physics - Experimentddc:530Neutron010306 general physicsAbsorption (electromagnetic radiation)PhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Large Hadron ColliderCross section:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionCalorimeter
researchProduct

Nuclear data activities at the n_TOF facility at CERN

2016

International audience; Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluate…

Nuclear reactionU-235Nuclear transmutationnTOFCAPTURE CROSS-SECTIONNuclear dataTOTAL ABSORPTION CALORIMETERGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]COLLABORATION7. Clean energy01 natural sciences3100PHYSICSNuclear physicsPhysics and Astronomy (all)neutronDESIGNRadiation dosimetry0103 physical sciencesCERNn_TOFNuclear Physics - ExperimentNeutron010306 general physicsnuclear data n_TOF CERNPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsFRAGMENT ANGULAR-DISTRIBUTIONLarge Hadron Colliderntof:Física [Àrees temàtiques de la UPC]Cross section010308 nuclear & particles physicscernExperimental dataRadioactive wasteNuclear datanuclear dataNATURAL SCIENCES. Physics.Radiació--DosimetriaPRIRODNE ZNANOSTI. Fizika.Nuclear technologyCAPTURE CROSS-SECTION TOTAL ABSORPTION CALORIMETER FRAGMENT ANGULAR-DISTRIBUTION NEUTRON TH-232 U-235 C6D6 COLLABORATION PHYSICS DESIGN.NEUTRONTH-232C6D6
researchProduct

Search for scalar quarks in Z0 decays

1990

A search has been made for pairs of scalar quarks (squarks) produced in e+e- annihilations at LEP (√s≃MZ0), and decaying into a standard quark and a neutral, non-interacting, stable, massive particle (the lightest supersymmetric particle, LSP). The search has been conducted for differences in the mass of the squark and LSP of 2 GeV/c2 and above. Up squarks with masses below 42 GeV/c2 and down squarks below 43 GeV/c2 were excluded. Six squark flavours degenerate in mass were excluded below 45 GeV/c2.

PhysicsQuarkNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsElectron–positron annihilationHigh Energy Physics::LatticeScalar (mathematics)Degenerate energy levelsHigh Energy Physics::PhenomenologyMassive particle01 natural sciencesLightest Supersymmetric ParticleNuclear physics0103 physical sciencesPhysique des particules élémentairesHigh Energy Physics::Experiment010306 general physicsNuclear ExperimentParticle Physics - Experiment
researchProduct

Multiplicity dependence of mean transverse momentum in $e^+e^-$ annihilations at LEP energies

1992

A strong increase of the mean transverse momentum [p(t)] with the number of charged particles n(ch) is observed in e+e- annihilations into hadrons at LEP energies, The effect resembles correlations observed in hadron-hadron interactions. In e+e- annihilations the [p(t)] and n(ch) correlations can be accounted for by gluon radiation.

Nuclear and High Energy PhysicsParticle physicsCOLLISIONSElectron–positron annihilationHadronNuclear TheoryISR ENERGIESANTI-PROTON COLLIDER; ISR ENERGIES; COLLISIONS; SPECTRA; EVENTS; MATTER; QCDRadiation01 natural sciencesANTI-PROTON COLLIDERNuclear physicsEVENTS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SPECTRAMultiplicity (chemistry)010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyQCDCharged particleGluonTransverse momentumFísica nuclearHigh Energy Physics::ExperimentMATTERParticle Physics - Experiment
researchProduct

Charged particle multiplicity distributions in restricted rapidity intervals in Z0 hadronic decays.

1991

The multiplicity distributions of charged particles in restricted rapidity intervals in Z0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3-and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, "clans", fluctuating both in number per event and particle content per clan, has also been used to analyse the pres…

COLLISIONSParticle physicsE+E ANNIHILATIONPhysics and Astronomy (miscellaneous)LUND MONTE-CARLOElectron–positron annihilationHadronElementary particlePETRA ENERGIES01 natural sciences250 GEV/CNuclear physicsDEPENDENCE0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RapidityNuclear Experiment010306 general physicsParton showerEngineering (miscellaneous)LUND MONTE-CARLO; JET PRODUCTION-RATES; E+E ANNIHILATION; 250 GEV/C; PETRA ENERGIES; COLLISIONS; DEPENDENCE; FRAGMENTATION; QCD; RESONANCEPhysics010308 nuclear & particles physicsJET PRODUCTION-RATESMultiplicity (mathematics)RESONANCEQCDCharged particleGluonPhysique des particules élémentairesHigh Energy Physics::ExperimentFRAGMENTATIONParticle Physics - Experiment
researchProduct

Determination of 55-155-155-1in second order QCD from hadronic Z decays

1992

Distributions of event shape variables obtained from 120600 hadronic Z decays measured with the DELPHI detector are compared to the predictions of QCD based event generators. Values of the strong coupling constant αs are derived as a function of the renormalization scale from a quantitative analysis of eight hadronic distributions. The final result, αs(MZ), is based on second order perturbation theory and uses two hadronization corrections, one computed with a parton shower model and the other with a QCD matrix element model. © 1992 Springer-Verlag.

Quantum chromodynamicsPhysicsParticle physicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsElectron–positron annihilationHadronHigh Energy Physics::Phenomenology01 natural sciencesHadronizationRenormalization0103 physical sciencesHigh Energy Physics::ExperimentPerturbation theory (quantum mechanics)010306 general physicsParton showerEngineering (miscellaneous)Event (particle physics)Zeitschrift für Physik C Particles and Fields
researchProduct

Measurements of the 90,91,92,94,96 Zr n, gamma cross-sections at n_TOF

2005

Neutron capture cross sections of the 90,91,92,94,96Zr have been measured over the energy range from 1 eV to 1 MeV at the spallation neutron facility n TOF at CERN in 2003. The innovative features of the neutron beam, in particular the high instantaneous flux, the high energy resolution and low background, together with improvements of the neutron sensitivity of the capture detectors make this facility unique for neutron-induced reaction cross section measurements with much improved accuracy. The preliminary results of the Zr measurements show capture resonance strengths generally smaller than in previous measurements. Peer Reviewed

Nuclear and High Energy PhysicsNeutron cross sectionsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryNeutron scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNeutrons -- SeccionsNeutron time-of-flight scatteringNuclear physics0103 physical sciencesNeutron cross sectionNeutrons -- MesuramentNeutron010306 general physicsNuclear ExperimentPhysicsBonner sphere010308 nuclear & particles physicsNeutrons--MeasurementNeutron stimulated emission computed tomographyNeutron temperatureNeutron capture:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]Physics::Accelerator Physics
researchProduct

Measurement of the partial width of the decay of the Z0 into charm quark pairs

1990

A determination of the partial width Γc̄ of the Z0 boson into charm quark pairs is presented, based on a total sample of 36 900 Z0 hadronic decays measured with the DELPHI detector at the LEP collider. The production rate of cc events is derived from the inclusive analysis of charged pions coming from the decay of charmed meson D*+-→D0π+ and D*-→D̄0π- where the π± is constrained by kinematics to have a low pT with respect to the jet axis. The probability to procedure these π± from D*± decay in cc events is taken to be 0.31±0.05 as measured at √S = 10.55 GeV. The measured relative partial width Γ∞/Γh = 0.162± 0.030(stat.) ± 0.050(syst.) is in good agreement with the standard model value of 0…

Nuclear and High Energy PhysicsParticle physicsE+E ANNIHILATIONMesonLUND MONTE-CARLOElectron–positron annihilationHadron01 natural sciencesJET FRAGMENTATIONCharm quarkStandard Modellaw.inventionNuclear physicsPHYSICSENERGYPionLUND MONTE-CARLO; D-STAR-MESON; E+E ANNIHILATION; JET FRAGMENTATION; CROSS-SECTION; PHYSICS; ENERGYlaw0103 physical sciences010306 general physicsColliderD-STAR-MESONNuclear ExperimentBosonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPhysique des particules élémentairesFísica nuclearHigh Energy Physics::ExperimentCROSS-SECTIONParticle Physics - Experiment
researchProduct

Search for scalar leptoquarks from Z$^0$ decays

1992

We have searched for pair produced scalar leptoquarks each decaying to a quark and a charged lepton in a sample of 116 000 hadronic Z0 events produced at LEP. No candidate was detected and cross section and branching ratio limits are set for the above process at 95% CL. Mass limits are found to be about 42 GeV/c2 depending only slightly on the models used and a coupling times branching ratio exclusion line is drawn for a scalar leptoquark with a free coupling. We have also probed the mass region above 45 GeV/c2 for a singly produced scalar leptoquark and set limits on the cross section and the coupling lambda(2)/4-pi up to 60 GeV.

QuarkLibraryNuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOElectron–positron annihilationHadronDigitisationArchive01 natural sciencesJET FRAGMENTATIONPHYSICSNuclear physicsLUND MONTE-CARLO; JET FRAGMENTATION; HADRONIC DECAYS; E+E; PHYSICS; BOSON0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Leptoquark010306 general physicsPhysicsFoucault010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyScalar (physics)BOSONE+EFísica nuclearHigh Energy Physics::ExperimentHADRONIC DECAYSParticle Physics - ExperimentLepton
researchProduct

MEASUREMENT OF THE GAMMA(B-B-OVER-BAR)/GAMMA(HAD) BRANCHING RATIO OF THE Z BY DOUBLE HEMISPHERE TAGGING

1995

Two measurements of {Mathematical expression} are presented. Both measurements use 250000 Z decays taken with the DELPHI detector in 1991 and rely mainly on the precision of the microvertex detector. One tagging method is as simple as possible so that background rates can be reliably predicted by simulation. The other one uses a more involved tagging technique and reduces the dependence on simulation as much as possible. Combining both results, {Mathematical expression} is found to be 0.2209±0.0041(stat.)±0.0042(syst.)±0.0018 {Mathematical expression}. © 1995 Springer-Verlag.

Particle physicsPhysics and Astronomy (miscellaneous)LUND MONTE-CARLOB-HADRONSElectron–positron annihilationHadronElementary particle01 natural sciencesPartícules (Física nuclear)b taggingJET FRAGMENTATIONNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsEngineering (miscellaneous)Detectors de radiacióDELPHIPhysicsE+E-PHYSICS010308 nuclear & particles physicsBranching fractionDetectormicrovertex detectorLUND MONTE-CARLO; JET FRAGMENTATION; HADRONIC DECAYS; E+E-PHYSICS; B-HADRONSb-taggingParticle accelerationDELPHI; microvertex detector; b taggingHADRONIC DECAYSParticle Physics - Experiment
researchProduct

Energy-energy correlations in hadronic final states from Z0 decays

1990

We have studied the energy-energy angular correlations in hadronic final states from Z0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ(5)/MS = 104-20 +25 (stat.)-20 +25(syst.)-00 +30(theor.) MeV, which corresponds to αs(91 GeV) = 0.106± 0.003 (stat.)±0.003(syst.)-0.000 +0.003(theor.). The theoretical error stems from different choices for the renormalization scale of αs. In the Monte Carlo simulation the scale of αs as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

Nuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLO2ND ORDER QCDElectron–positron annihilationHadronMonte Carlo methodElementary particleSTRONG-COUPLING-CONSTANT; ELECTRON-POSITRON ANNIHILATION; LUND MONTE-CARLO; FREE PERTURBATION-THEORY; 2ND ORDER QCD; E+E-ANNIHILATION; QUANTUM CHROMODYNAMICS; ALPHA-S; FRAGMENTATION MODELS; JET FRAGMENTATIONFRAGMENTATION MODELS01 natural sciencesJET FRAGMENTATIONNuclear physicsParticle decay0103 physical sciencesSTRONG-COUPLING-CONSTANTALPHA-S010306 general physicsNuclear ExperimentELECTRON-POSITRON ANNIHILATIONQuantum chromodynamicsCoupling constantPhysicsQUANTUM CHROMODYNAMICSAnnihilation010308 nuclear & particles physicsE+E-ANNIHILATIONFREE PERTURBATION-THEORYPhysique des particules élémentairesFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Search for Z0 decays to two leptons and a charged particle-antiparticle pair

1993

Based on a sample equivalent to 365 000 hadronic Z0 decays, the search in DELPHI data for pairs of leptons accompanied by a pair of charged particles is described. A total of 11 events were found in the electron channel, 9 in the muon channel and 7 in the tau channel. Results on lepton pairs with a radiated photon are also presented. The data from all channels are compatible with the expectations from standard processes. However, one event was found in the tau channel with an unusually high mass of the charged particle pair.

PhysicsNuclear and High Energy PhysicsAntiparticleParticle physicsPhotonMuonElementary particleCharged particleNuclear physicsParticle decay[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentFísica nuclearEvent (particle physics)Particle Physics - ExperimentLeptonComputer Science::Information Theory
researchProduct

Production of strange particles in the hadronic decays of the Z0

1992

Abstract An analysis of the production of strange particles from the decays of the Z 0 boson into multihadronic final states is presented. The analysis is based on about 90 000 selected hadronic Z 0 decays collected by the DELPHI detector at LEP in 1990. K s 0 , K ∗± , Λ( Λ ) and Ξ − ( Ξ + ) have been identified by their characteristic decays. The measured production cross sections are compared with predictions of the Lund Monte Carlo tuned to data at PEP/PETRA energies.

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsLUND MONTE-CARLOElectron–positron annihilationHadronMonte Carlo methodDetector01 natural sciencesJET FRAGMENTATIONNuclear physicsPHYSICSQUARK SUPPRESSION0103 physical sciencesMass spectrum[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Física nuclearHigh Energy Physics::Experiment010306 general physicsLUND MONTE-CARLO; JET FRAGMENTATION; QUARK SUPPRESSION; PHYSICSParticle Physics - ExperimentBoson
researchProduct

Improved measurements of cross sections and asymmetries at the Z0 resonance

1994

During the 1992 running period of the LEP e+e- collider, the DELPHI experiment accumulated approximately 24 pb-1 of data at the Z0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m(t) = 157(-48)+36(expt.)-20(+19)(Higgs) GeV, and for the effective mixing angle sin2 …

Nuclear and High Energy PhysicsParticle physicsTop quarkLUND MONTE-CARLOElectron–positron annihilationLEP-SLC ENERGIESElementary particle7. Clean energy01 natural sciencesJET FRAGMENTATIONStandard ModelPHYSICSNuclear physicsBHABHA SCATTERINGParticle decay0103 physical sciencesPROGRAM[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSZ0010306 general physicsDELPHIPhysicsLOWEST-ORDER CALCULATIONScross section010308 nuclear & particles physicsDELPHI; Bhabha scattering; cross section; Z0High Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERLUND MONTE-CARLO; ELECTRON-POSITRON COLLISIONS; LOWEST-ORDER CALCULATIONS; LEP-SLC ENERGIES; BHABHA SCATTERING; RADIATIVE-CORRECTIONS; JET FRAGMENTATION; PROGRAM; PHYSICSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderHiggs bosonPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentELECTRON-POSITRON COLLISIONSParticle Physics - ExperimentLepton
researchProduct

GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF

2014

The neutron sensitivity of the C6D6 detector setup used at n_TOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has beeni mplemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with anatC sample, showing an excellent agreement above 1 keV. At lower energies, an additional compo…

Neutron captureNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaGEANT4 simulations; Neutron time of flight; Neutron background; n_TOF; Neutron captureFOS: Physical sciencesNeutronN-TOF7. Clean energy01 natural sciencesPartícules (Física nuclear)Nuclear physicsCross section (physics)0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsGEANT4 simulations;N-TOF;Neutron time of flight;Neutron capture;Neutron backgroundNuclear ExperimentInstrumentationphysics.ins-detNuclear ExperimentGEANT4Line (formation)Particles (Nuclear physics)PhysicsBonner sphere:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsGEANT4 simulation:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsDetectorFísicaNeutron sensitivityDetectorInstrumentation and Detectors (physics.ins-det)Neutron radiationNEUTRON TIME OF FLIGHTNeutron captureBackgroundDeuteriumN_TOFGEANT4 simulationsNeutron backgroundSimulation
researchProduct

Neutron measurements for advanced nuclear systems: The n_TOF project at CERN

2012

A few years ago, the neutron time-of-flight facility n_TOF was built at CERN to address some of the urgent needs of high-accuracy nuclear data for Accelerator Driven Systems and other advanced nuclear energy systems, as well as for nuclear astrophysics and fundamental nuclear physics. Thanks to the characteristics of the neutron beam, and to state-of-the-art detection and acquisition systems, high quality neutron cross-section data have been obtained for a variety of isotopes, many of which radioactive. Following an important upgrade of the spallation target and of the experimental area, a new measurement campaign has started last year. After a brief review of the most important results obt…

Nuclear and High Energy PhysicsAstrofísica nuclearNuclear engineeringNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physics0103 physical sciencesNuclear astrophysicsSpallationNeutron010306 general physicsNuclear ExperimentInstrumentationPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsNuclear fissionNuclear dataNeutron radiationNuclear technologyEnergia nuclearPhysics::Accelerator PhysicsFísica nuclearSpallation Neutron Source
researchProduct

A measurement of the mean lifetimes of charged and neutral B-hadrons

1993

The decays of B-hadrons have been reconstructed using the charged particles recorded in the DELPHI silicon microstrip detector. The sum of the charges of the secondaries determines the charge of the B-hadron parent. Some 232 114 multihadronic Z0 decays recorded during the 1991 run of LEP at centre-of-mass energies between 88.2 GeV and 94.2 GeV yield 253 B-hadron candidates with well-measured charge. From these the mean lifetimes of neutral and charged B-hadrons are found to be 1.44 +/- 0.21(stat.) +/- 0.14(syst.) ps and 1.56 +/- 0.19(stat.) +/- 0.13(syst.) ps respectively. The ratio of their lifetimes is 1.09(-0.23)+0.28 (Stat.) +/- 0.11 (syst.). Under some assumptions on the abundance and …

Nuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOElectron–positron annihilationHadronElementary particle01 natural sciencesJET FRAGMENTATIONNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment010306 general physicsNeutral particleAstrophysics::Galaxy AstrophysicsLUND MONTE-CARLO; JET FRAGMENTATION; E+E-PHYSICSPhysicsE+E-PHYSICS010308 nuclear & particles physicsCharge densityCharge (physics)Charged particleMass spectrumFísica nuclearHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsParticle Physics - Experiment
researchProduct

Measurement of the Z$^0$ branching fraction to b quark pairs using the boosted sphericity product

1992

Abstract From a sample of about 120 000 hadronic Z 0 decays, using a technique based on a separation of the different event categories in the boosted sphericity product, the fraction of b b decays has been measured to be 0.219 ± 0.014 (stat)± 0.019 (syst). Using the DELPHI determination of the hadronic Z 0 width, this corresponds to a partial width τ b b = 378 ± 42 MeV (in good agreement with the standard model prediction of ∼-380 MeV). Combining this measurement with the determinations based on events with high p t leptons gives an estimate for the branching ratio of b into leptons at LEP of (11.2 ± 1.2)%, consistent with previous determinations.

Nuclear and High Energy PhysicsParticle physicsE+E ANNIHILATIONLUND MONTE-CARLOElectron–positron annihilationHadron01 natural sciencesBottom quarkJET FRAGMENTATIONDECAYSStandard ModelSphericityNuclear physicsPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyProduct (mathematics)Física nuclearHigh Energy Physics::ExperimentLUND MONTE-CARLO; JET FRAGMENTATION; E+E ANNIHILATION; PHYSICS; DECAYSParticle Physics - ExperimentLepton
researchProduct

Experimental neutron capture data of 58Ni from the CERN n_TOF facility

2014

The $^{58}$Ni $(n,\gamma)$ cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT$=$5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2$\pm$0.6$_\mathrm{stat}\pm$1.8$_\mathrm{sys}$ mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When in…

Nuclear and High Energy PhysicsnTOFAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNEUTRON RESONANCE ANALYSISNeutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsTime of flight58Ni neutron capture cross section; n_TOF; MACS0103 physical sciencesNeutron cross section:Física::Electromagnetisme [Àrees temàtiques de la UPC]Nuclear Physics - ExperimentNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsNeutronsLarge Hadron ColliderCross section010308 nuclear & particles physicsCERN - n_TOFResonanceFísicaNEUTRON TIME OF FLIGHTNeutron temperatureTime of flightNeutron captureNeutrons CaptureS PROCESSs-process
researchProduct

Multiplicity fluctuations in hadronic final states from the decay of the Z0

1992

An analysis of the fluctuations in the phase space distribution of hadrons produced in the decay of 78829 Z0 has been carried out, using the method of factorial moments. The high statistics collected by the DELPHI experiment at LEP during 1990 allowed studies of the event sample both globally and in intervals of p(t) and multiplicity, and for different jet topologies and for single jets. A large contribution to the factorial moments of the one-dimensional data on rapidity with respect to the event axis comes from hard gluons. Details of factorial moments in two and three dimensions are presented. Influences of resonance decays have been studied by Monte Carlo simulation: one-dimensional fac…

Nuclear and High Energy PhysicsFactorialParticle physicsE+E ANNIHILATIONLUND MONTE-CARLOMonte Carlo methodPartonMULTIPARTICLE PRODUCTION01 natural sciences7. Clean energyJET FRAGMENTATIONNuclear physicsParticle decayRAPIDITY DISTRIBUTIONS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RapidityZ0010306 general physicsParton showerHIGH-ENERGY COLLISIONSQuantum chromodynamicsPhysics010308 nuclear & particles physicsLUND MONTE-CARLO; HIGH-ENERGY COLLISIONS; E+E ANNIHILATION; MULTIPARTICLE PRODUCTION; RAPIDITY DISTRIBUTIONS; INTERMITTENCY ANALYSIS; JET FRAGMENTATION; Z0; QCD; SIMULATIONQCDINTERMITTENCY ANALYSISGluonSIMULATIONHigh Energy Physics::ExperimentFísica nuclearParticle Physics - Experiment
researchProduct

Classification of the hadronic decays of the Z$^0$ into b and c quark pairs using a neural network

1992

A classifier based on a feed-forward neural network has been used for separating a sample of about 123 500 selected hadronic decays of the Z 0 , collected by DELPHI during 1991, into three classes according to the flavour of the original quark pair: u u +d d +s s (unresolved), c c and b b . The classification has been used to compute the partial widths of the Z 0 into b and c quark pairs. This gave Γ c c /Γ h = 0.151 ± 0.008 ( stat. ) ± 0.041 ( syst. ) , Γ b b /Γ h = 0.232±0.005 ( stat. )±0.017 ( syst. ) .

QuarkNuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLO; HEAVY FLAVOR PRODUCTION; JET FRAGMENTATION; PHYSICS; BOSONHEAVY FLAVOR PRODUCTIONLUND MONTE-CARLOElectron–positron annihilationFlavourHadronMathematicsofComputing_GENERALComputer Science::Digital Libraries01 natural sciencesJET FRAGMENTATIONCharm quarkPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsArtificial neural network010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTheoryofComputation_GENERALBOSONMathMLComputer Science::Mathematical SoftwareHigh Energy Physics::ExperimentFísica nuclearClassifier (UML)Particle Physics - Experiment
researchProduct

Experimental study of the triple-gluon vertex

1991

Abstract In four-jet events from e+e− →Z0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor Nc to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models…

Particle physicsCOLLISIONSNuclear and High Energy PhysicsE+E ANNIHILATION[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]LUND MONTE-CARLOElectron–positron annihilationHigh Energy Physics::LatticeNON-ABELIAN NATURE01 natural sciencesJET FRAGMENTATIONDECAYSPHYSICSAngular distribution3-GLUON VERTEX0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsQuantum chromodynamicsPhysics010308 nuclear & particles physicsLUND MONTE-CARLO; NON-ABELIAN NATURE; 4-JET EVENTS; JET FRAGMENTATION; E+E ANNIHILATION; 3-GLUON VERTEX; QCD; PHYSICS; COLLISIONS; DECAYSHigh Energy Physics::PhenomenologyCasimir elementQCDVertex (geometry)Gluon4-JET EVENTSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Limits on the production of scalar leptoquarks from $Z^0$ decays at LEP

1993

A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equ…

Nuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOElectron–positron annihilationScalar (mathematics)Elementary particle01 natural sciencesJET FRAGMENTATIONNuclear physicsPHYSICSSEARCH0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PARTICLESLeptoquarkE+E COLLIDERSLimit (mathematics)LUND MONTE-CARLO; JET FRAGMENTATION; E+E COLLIDERS; SEARCH; SIGNATURES; PARTICLES; PHYSICS010306 general physicsSIGNATURESPhysics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyYukawa potentialPair productionHigh Energy Physics::ExperimentFísica nuclearParticle Physics - Experiment
researchProduct

A Measurement of Sin2-theta-w From the Charge Asymmetry of Hadronic Events At the Z0 Peak

1992

Abstract View references (24)The weak mixing angle has been measured from the charge asymmetry of hadronic events with two different approaches using the DELPHI detector at LEP. Both methods are based on a momentum-weighted charge sum to determine the jet charge in both event hemispheres. In a data sample of 247 300 multihadronic Z0 decays a charge asymmetry of 〈QF〉 - 〈QB〉 = -0.0076±0.0012(stat.)±0.0005(exp. syst.)±0.0014(frag.) and a raw forward-backward asymmetry of Araw FB = -0.0109±0.0020(stat.)±0.0010(exp. syst.)±0.0017(frag.) have been measured. This result corresponds to a value of sinθeff=0.2345±0.0030(exp.)±0.0027(frag.) ,sin2θMS=0.2341±0.0030(exp.)±0. 0027(frag.) and to sin2θW=1-m…

Nuclear and High Energy PhysicsParticle physicsE+E ANNIHILATIONLUND MONTE-CARLOElectron–positron annihilationmedia_common.quotation_subjectHadronJet (particle physics)collective information systems01 natural sciencesAsymmetryJET FRAGMENTATIONNuclear physicsPHYSICS0103 physical sciencespersonal information system[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]LUND MONTE-CARLO; E+E ANNIHILATION; JET FRAGMENTATION; Z-DECAYS; PHYSICS010306 general physicsZ-DECAYSmedia_commonPhysicsRange (particle radiation)010308 nuclear & particles physicsWeinberg angleCharge (physics)information scienceQuadratic Gauss suminformation praticesPhysique des particules élémentairesHigh Energy Physics::ExperimentFísica nuclearParticle Physics - Experiment
researchProduct