Gold nanostars coated with neutral and charged polyethylene glycols: A comparative study of in-vitro biocompatibility and of their interaction with SH-SY5Y neuroblastoma cells
Gold nanostars (GNS) have been coated with four different polyethylene glycols (PEGs) equipped with a -SH function for grafting on the gold surface. These PEGs have different chain lengths with average MW = 2000, 3000, 5000 and average number of -O-CH2-CH2 - units 44, 66, and 111, respectively. Two are neutral and two are terminated with -COOH and -NH2 functions, thus bearing negative and positive charges at physiological pH, thanks to the formation of carboxylate and ammonium groups. The negative charge of the GNS coated with PEG carboxylate has also been exploited to further coat the GNS with the PAH (polyallylamine hydrochloride) cationic polymer. Vitality tests have been carried out on …
Micelles as containers for self-assembled nanodevices: a fluorescent sensor for lipophilicity
Potentiometric titrations, fluorescence versus pH titrations, dynamic light scattering and fluorescence polarization anisotropy studies demonstrate that inside the nanodimensioned Triton X-100 micelles, 1-pyrenecarboxylic acid, PCOO-, forms an apical complex with the Zn2+ cation encircled by a lipophilic cyclen ligand and hugely increasing its fluorescence. The ability of the Zn2+-cyclen-PCOO- complex plus its micellar container to act as a fluorescent sensor to evaluate the lipophilicity of molecular species is demonstrated on the fatty acid series CH 3(CH2)xCOOH (x=0-16). At pH 7.4 a decrease in fluorescence is observed on the addition of fatty acids that is directly related to their chai…
Amphiphilic Copolymers Based on Poly[(hydroxyethyl)-d,l-aspartamide]: A Suitable Functional Coating for Biocompatible Gold Nanostars
Novel amphiphilic copolymers have been synthesized based on a biocompatible poly(hydroxyethylaspartamide) (PHEA) backbone, bearing both anchoring groups for gold nanoparticles, such as thiols and disulfide, and conjugable moieties, such as amino groups, the latter as points suitable for appending further functional agents. The strategy was to functionalize α,β-poly[(N-2- hydroxyethyl)-d,l-aspartamide] (PHEA) with PEG2000-NH2 and with ethylenediamine (EDA) obtaining a partially pegylated copolymer with a large number of pendant primary amino groups. A fraction of the latter was conjugated with molecules bearing terminal thiol moieties such as 12-mercaptododecanoic acid (MDA) and disulfide gr…
Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars
The stability of thiol bonding on the surface of star-shaped gold nanoparticles was studied as a function of temperature in water and in a set of biologically relevant conditions. The stability was evaluated by monitoring the release of a model fluorescent dye, Bodipy-thiol (BDP-SH), from gold nanostars (GNSs) cocoated with poly(ethylene glycol) thiol (PEG-SH). The increase in the BDP-SH fluorescence emission, quenched when bound to the GNSs, was exploited to this purpose. A maximum 15% dye release in aqueous solution was found when the bulk temperature of gold nanostars solutions was increased to T = 42 °C, the maximum physiological temperature. This fraction reduces 3-5% for temperatures …
In Vitro–In Vivo Fluctuation Spectroscopies
Fluorescence correlation spectroscopy (FCS) was first developed for biophysical studies in analogy with photon scattering correlation spectroscopy. Although it is mainly devoted to the study of freely diffusing particles, FCS is actually able to discern between different kinds of motions, such as diffusion, anomalous diffusion, or drift motions. The frontier application of FCS nowadays is in medical studies both within cells and on the cell membranes, and in the investigation of single molecules in solid matrices. In this field, FCS originated also image correlation spectroscopy methods. The whole field can be unified under the name of fluorescence fluctuation spectroscopy (FFS). We present…
Gold nanostars co-coated with the Cu(II) complex of a tetraazamacrocyclic ligand
The twelve-membered tetraazamacrocyclic ligand L1 bears an appended lipoic acid unit, whose disulphide ring is an efficient grafting moiety for the surface of gold nanostars (GNS). The GNS that were used featured a localized surface plasmon resonance (LSPR) absorption at ∼800 nm, i.e. in the near infrared (NIR). We investigated different approaches for coating them with the Cu(2+) complex of L1. While the direct reaction of [CuL1](2+) with as-prepared GNS led to aggregation, an initial coating step with polyethyleneglycol-thiol (PEG-SH) was found to be advantageous. Displacement reactions were carried out on pegylated GNS either with [CuL1](2+), directly generating [Cun(L1@GNS)](2n+), or wi…
GFP-mut2 Proteins in Trehalose-Water Matrixes: Spatially Heterogeneous Protein-Water-Sugar Structures
We report investigations on the properties of nanoenvironments around single-GFP-mut2 proteins in trehalose-water matrixes. Single-GFPmut2 molecules embedded in thin trehalose-water films were characterized in terms of their fluorescence brightness, bleaching dynamics, excited state lifetime, and fluorescence polarization. For each property, sets of approximately 100-150 single molecules have been investigated as a function of trehalose content and hydration. Three distinct and interconverting families of proteins have been found which differ widely in terms of bleaching dynamics, brightness, and fluorescence polarization, whose relative populations sizably depend on sample hydration. The r…