0000000000089545
AUTHOR
Corneliu A. Marinov
Numerical approach for signal delay in general distributed networks
The authors consider a general network with telegraph equations modelling distributed elements and having, additionally, nonlinear capacitors. A global asymptotic exponential stability of the solution is given. A simple computable upper bound of the delay time is given. Numerical examples illustrate the usefulness of the results. >
Well-posed nonlinear problems in integrated circuits modeling
In this paper we study the problem (E) + (BC) + (IC) (see below) which represents a model for integrated circuits. We assume that the distributed parametersr(x) andc(x) are nonconstant, dielectric leakages depend on thex-coordinate as well as the voltage level, while the interconnecting multiport is nonlinear and possibly multivalued.
A delay time bound for distributed parameter circuits with bipolar transistors
We prove here a stability theorem concerning a parabolic system of equations with non-linear boundary conditions that governs the behaviour of a class of networks in which the bipolar transistors operating under large-signal conditions are interconnected with reg-lines modelled by telegraph equations
Asymptotical Convergence Evaluation for a Parabolic Problem Arising in Circuit Theory
GLOBAL DELAY TIME FOR GENERAL DISTRIBUTED NETWORKS WITH APPLICATIONS TO TIMING ANALYSIS OF DIGITAL MOS INTEGRATED CIRCUITS
We consider here a general nerwork composed by n‐distributed parameters lines (with telegraph‐equations models) and m‐capacitors, all connected by a resistive multiport. An asymptotic stability property drives us to define and evaluate a global parameter (“λ‐delay time”) which describes the speed of signals propagation through the network. Because of its simplicity of calculation and its tightness, the given upper bound of the λ‐delay time is useful in timing analysis of MOS integrated chips.