0000000000089551

AUTHOR

P. Armbruster

Low-energy fission investigated in reactions of 750 AMeV 238U-ions with Pb and Be targets

Charge distributions of fragments from low energy nuclear fission are investigated in reactions of highly fissile238U projectiles at relativistic energies (750 A·MeV) with a heavy (Pb) and a light (Be) target. The fully stripped fission fragments are separated by the Fragment Separator (FRS). Their high kinetic energies in the laboratory system allow the identification of all atomic numbers by using Multiple-Sampling Ionization Chambers (MUSIC). The elemental distributions of fragments observed at larger magnetic rigidities than the238U projectiles show asymmetric break-up and odd-even effects. They indicate a low energy fission process, induced mainly by dissociation in the electro-magneti…

research product

The new nuclide225U

In the bombardment of a 270μg/cm 2 180Hf target with48 Ca projectiles at a primary beam energy of E/A=4.24 MeV/u the new nuclide225U was produced. The experiment was performed at the velocity filter SHIP. 225U was found to decay by α emission with Eα=(7880 ±20) keV (≈90%), (7830±20) keV (≈10%) and has a half-life ofT 1/2=(80 −20 +40 ms).

research product

Primary-residue production cross sections and kinetic energies in 1AGeV 208Pb on deuteron reactions

Abstract The production cross sections and the kinematical properties of primary residual nuclei have been studied in the reaction 208 Pb(1  A  GeV)+d. Isotopic distributions were measured for all elements from titanium ( Z =22) to lead ( Z =82). The measured kinematical properties of the residues were also used to disentangle the relevant reaction mechanisms, spallation–evaporation and spallation–fission. The fragment separator FRS at GSI, Darmstadt, was used to separate and identify the reaction products. The measured quantities are important for the design and planning of future radioactive-beam facilities and accelerator-driven systems. The measured data of the present work are comprehe…

research product

Determination of the partial electron capture- and spontaneous-fission half-lives of254No

The isotope254No was produced in the fusion reaction48Ca +208Pb. Using the velocity filter SHIP and radiochemical techniques it was found that the nuclide254No with a half-life of 55 s decays byα, EC, and spontaneous-fission. Deduced partial half-lives are (61±2) s forα-decay, (550−160+370) s for EC and [2.2−1.0+2.0]×104 s for spontaneous fission.

research product

The new element 112

The new element 112 was produced and identified unambiguously in an experiment at SHIP, GSI Darmstadt. Two decay chains of the isotope277112 were observed in irradiations of208Pb targets with70Zn projectiles of 344 MeV kinetic energy. The isotope decays by emission of α particles with a half-life of (240 −90 +430 )µs. Two different α energies of (11,649±20) keV and (11,454±20) keV were measured for the two observed decays. The cross-section measured in three weeks of irradiations is (1.0 −0.4 +1.8 ) pb.

research product

First spatial isotopic separation of relativistic uranium projectile fragments

Abstract Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z = 92. This achievement has …

research product

The new element 111

The new element 111 was produced and unambiguously identified in an experiment at SHIP, GSI Darmstadt. Three nuclei of the isotope272111 were observed in irradiations of209Bi targets with64Ni projectiles of 318 MeV and 320 MeV energy. The cross-sections are (1.7 −1.4 +3.3 ) pb and (3.5 −2.3 +4.6 ) pb, respectively. The nuclei decay by a emission into the new and so far the heaviest isotopes of the elements 109 and 107 with mass numbers A=268 and A=264. Theα-decay chains were followed down to the known nuclei260105 and256Lr.

research product

Production and decay of269110

In an experiment carried out to identify element 110, we have observed anα-decay chain, that can be unambiguously assigned to269110. In a scries of preexperiments the excitation functions of the fusion reactions50Ti +208Pb→258104* and58Fe +208Pb→266108* were measured with high precision in order to get the optimum projectile energies for the production of these heavy elements. The cross-section maxima of the 1n evaporation channels were observed at excitation energies of 15.6 MeV and 13.4 MeV, respectively. These data result in an optimum excitation energy of 12.3 MeV of the compound nucleus for the production of269110 in the reaction62Ni +208Pb→269110 + 1n. In irradiations at the correspon…

research product

Experiments on Fission Dynamics with Relativistic Heavy-ion Beams

[Abstract] At GSI, Darmstadt, an experimental program on fission with relativistic heavy-ion beams is in progress. A large range of excitation energies, combined with low angular momentum and small shape distortion is accessible. Full nuclide identification of the reaction residues is achieved by applying inverse kinematics. The nuclide production and the kinematics of fission fragments from a variety of primordial and radioactive projectiles reveal new insight into the influence of shell effects and dissipation on the fission process. The present contribution gives an overview on the experimental methods, the experimental results and the prospects for future progress.

research product

Small angle scattering from oriented latent nuclear tracks

Abstract Using X-ray and neutron small-angle scattering we studied the defects in mica created by irradiation with uranium ions delivered from the UNILAC accelerator at GSI (Darmstadt, Germany). The defects are regions of reduced density and are best described as cylinders with Gaussian radial density distribution. Scaling laws are given for the time development and the energy dependence of the track parameters.

research product

Measurements of Spallation Residues Using Inverse Kinematics at GSI

The production cross sections and the kinematical properties of primary residual nuclei have been studied in reactions 197Au + p, 208Pb + p, d, 238U + p, d, and 238U + 208Pb at energies around 1 A GeV. The measured kinematical properties of the residues were also used to disentangle the relevant reaction mechanisms, spallation-evaporation and spallation-fission. The fragment separator FRS at GSI, Darmstadt, was used to separate and identify the reaction products. The measured quantities are important for the design and planning of future radioactive-beam facilities and accelerator-driven systems.

research product

Investigation of heavy ion produced defect structures in insulators by small angle scattering

Fast heavy ions produce stable defects in most dielectrica. As examples mica, Polyethylenterephtalat and Polystyrol were irradiated with Ar, Ni, Kr, Xe and U ions in an energy range from 0.5 up to 20 MeV/u. The resulting defects were investigated by neutron and x-ray small-angle scattering. The ion beam supplied by the UNILAC accelerator at GSI Darmstadt is characterized by its small emittance, the well defined mass, charge and energy of the ions and their stochastical distribution in the phase space. In scattering experiments the system of scattering centers created by these ions causes a scattered intensity distribution which strongly depends on the orientation of the sample with respect …

research product

Attempts to Produce Superheavy Elements by Fusion ofCa48withCm248in the Bombarding Energy Range of 4.5-5.2 MeV/u

A search for superheavy elements was made in bombardments of $^{248}\mathrm{Cm}$ with $^{48}\mathrm{Ca}$ ions performed at projectile energies close to the interaction barrier in order to keep the excitation energy of the compound nucleus $Z=116$, $A=296$ as low as possible. No evidence for superheavy nuclei was obtained in a half-life region from 1 \ensuremath{\mu}s to 10 yr with a production cross section greater than ${10}^{\ensuremath{-}34}$ to ${10}^{\ensuremath{-}35}$ ${\mathrm{cm}}^{2}$.

research product

Gas-filled recoil separator for studies of heavy elements

Abstract A gas-filled recoil separator for the study of heavy elements has been constructed. The separator is of type QDQQ with the first, vertically focusing, quadrupole providing improved matching to the acceptance of the dipole magnet. The separator has been designed also for use in vacuum mode in which case a mass resolving power of ≈ 100 is estimated. The deflection angle is 25° and the radius of curvature is 1850 mm. Maximum beam rigidity is 2.2 T m. In the first experiments, new isotopes in the region Z = 85–90 have been synthesized.

research product