6533b827fe1ef96bd1286f63

RESEARCH PRODUCT

First spatial isotopic separation of relativistic uranium projectile fragments

C. ScheidenbergerT. BrohmC. RöhlHans GeisselH. FolgerK.-h. SchmidtA. MagelB. BlankM. BernasP. ArmbrusterK. SümmererG. MünzenbergA. PiechaczekW. SchwabH. IrnichM. PfütznerHermann WollnikS. SteinhäuserThomas AumannS. CzajkowskiA. HeinzF. NickelE. HaneltW. TrinderBurkart VossM. De JongH.-g. ClercArnd R. JunghansA. Grewe

subject

Nuclear and High Energy PhysicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICES010308 nuclear & particles physicsChemistryProjectileNuclear TheoryTheoryofComputation_GENERALSeparator (oil production)chemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]UraniumAccelerators and Storage RingsComputingMethodologies_ARTIFICIALINTELLIGENCE01 natural sciencesNuclear physicsComputingMethodologies_PATTERNRECOGNITIONCardinal point0103 physical sciencesMonoisotopic massAtomic physicsNuclear Experiment010306 general physicsInstrumentation

description

Abstract Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z = 92. This achievement has opened a new area in heavy-ion research and applications.

https://doi.org/10.1016/0168-583x(94)95436-4