0000000000122066
AUTHOR
C. Scheidenberger
Erratum to: “Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer” [Nucl. Phys. A 763 (2005) 45]
On-line commissioning of SHIPTRAP
Abstract The on-line commissioning of the Penning-trap mass spectrometer SHIPTRAP was successfully completed with a mass measurement of holmium and erbium radionuclides produced at SHIP. A large fraction of contaminant ions created in the stopping cell was identified to originate from the buffer-gas supply system. Using a liquid nitrogen cold trap they were reduced to a tolerable amount and mass measurements of Er 147 , Er 148 , and Ho 147 with relative uncertainties of about 1 × 1 0 − 6 were performed.
Three-body correlations in electromagnetic dissociation of Borromean nuclei: The 6He case
20 pages, 2 tables, 9 figures, 1 appendix.-- PACS nrs.: 25.60.-t; 27.20.+n; 25.70.De; 25.75.Gz.-- Printed version published Sep 5, 2005.
Precision experiments with time-resolved Schottky mass spectrometry
Abstract A large area on the mass surface of neutron-deficient nuclides (36≤Z≤85) was measured with time-resolved Schottky mass spectrometry at the FRS-ESR facilities. The masses of 114 nuclides were obtained for the first time from which 43 were determined via known decay energies. The improved mass accuracy of 30 keV allowed to study the isospin dependence of nuclear pairing, to precisely locate the one-proton dripline for odd-Z isotopes from Tb to Pa and to make crucial tests of the predictive powers of modern mass models.
Invariant mass spectrum and α-n correlation function studied in the fragmentation of 6He on a carbon target
13 pags, 5 figures.-- PACS nrs.: 24.60.−t; 25.70.Ef; 27.20.+n.
Decay studies in the A∼225 Po-Fr region from the DESPEC campaign at GSI in 2021
The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region. peerReviewed
Measurements of the dipole response with radioactive beams
Systematic investigation of the drip-line nuclei 11Li and 14Be and their unbound subsystems 10Li and 13Be
Fragmentation reactions in a carbon target with beams of 11Li and 14Be at relativistic energies have been studied in a kinematically complete experiment at the ALADIN-LAND setup at GSI. Excited states in 11Li and 14Be were obtained from the data in the inelastic channel. The measured cross sections with the core nucleus in the final state show that in the 14Be case core polarization plays an important role. In the one-neutron knockout channels the measured angular correlations between fragment and neutron are asymmetric, which demonstrates the presence of states with different parities in the 11Li and 14Be ground states. For 10Li a low-lying virtual s-state, a p-state and evidence for a d-s…
First Measurement of Severalβ-Delayed Neutron Emitting Isotopes BeyondN=126
The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.
Few-neutron removal from238U at relativistic energies
As part of a comprehensive study of uranium fragmentation at relativistic energies at the GSI projectile fragment separator, FRS, inclusive neutron-removal cross sections have been measured for severalxn channels at projectile energies of 600 and 950A MeV using targets of Al, Cu and Pb. The variation of the experimental cross sections with target nuclear charge is used to disentangle nuclear and electromagnetic contributions. The electromagnetic cross sections agree surprisingly well with a simple harmonic oscillator calculation of giant dipole resonances based on measured photonuclear cross sections and do not require an extra enhancement of the two-phonon giant dipole excitation as conclu…
Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer
Abstract The atomic masses of 76,77,80,81,86,88 Sr and 124,129,130,131,132 Sn were measured by means of the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. 76 Sr is now the heaviest N = Z nucleus for which the mass is measured to a precision better than 35 keV. For the tin isotopes in the close vicinity of the doubly magic nucleus 132 Sn, mass uncertainties below 20 keV were achieved. An atomic mass evaluation was carried out taking other experimental mass values into account by performing a least-squares adjustment. Some discrepancies between older experimental values and the ones reported here emerged and were resolved. The results of the new adjustment and their impact will be pr…
A linear radiofrequency quadrupole ion trap for the cooling and bunching of radioactive ion beams
A linear radiofrequency quadrupole ion guide and beam buncher has been installed at the ISOLTRAP mass spectrometry experiment at the ISOLDE facility at CERN. The apparatus is being used as a beam cooling, accumulation, and bunching system. It operates with a buffer gas that cools the injected ions and converts the quasicontinuous 60- keV beam from the ISOLDE facility to 2.5-keV beam pulses with improved normalized transverse emittance. Recent measurements suggest a capture efficiency of the ion guide of up to 40% and a cooling and bunching efficiency of at least 12% which is expected to still be increased. The improved ISOLTRAP setup has so far been used very successfully in three on-line e…
Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP
Abstract Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further …
Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility
Masses of 582 neutron-deficient nuclides ($30\leq{Z}\leq{85}$) were measured with time-resolved Schottky mass spectrometry at the FRS-ESR facility at GSI, 117 were used for calibration. The masses of 71 nuclides were obtained for the first time. A typical mass accuracy of 30 $\mu$u was achieved. These data have entered the latest atomic mass evaluation. The mass determination of about 140 additional nuclides was possible via known energies ($Q$-values) of $\alpha-$, $\beta-$, or proton decays. The obtained results are compared with the results of other measurements.
Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer
Abstract The masses of Xe isotopes with 124⩾ A ⩾114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm ≈12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found.
Approaching the precursor nuclei of the third r-process peak with RIBs
The rapid neutron nucleosynthesis process involves an enormous amount of very exotic neutron-rich nuclei, which represent a theoretical and experimental challenge. Two of the main decay properties that affect the final abundance distribution the most are half-lives and neutron branching ratios. Using fragmentation of a primary $^{238}$U beam at GSI we were able to measure such properties for several neutron-rich nuclei from $^{208}$Hg to $^{218}$Pb. This contribution provides a short update on the status of the data analysis of this experiment, together with a compilation of the latest results published in this mass region, both experimental and theoretical. The impact of the uncertainties …
Two- and three-body correlations: breakup of halo nuclei
4 pages, 2 figures.
A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams
An ion beam cooler and buncher has been developed for the manipulation of radioactive ion beams. The gas-filled linear radiofrequency ion trap system is installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its purpose is toaccumulate the 60-keV continuous ISOLDE ion beam with high efficiency and to convert it into low-energy low-emittance ion pulses. The efficiency was found to exceed 10\,\% in agreement with simulations. A more than 10-fold reduction of the ISOLDE beam emittance can be achieved. The system has been used successfully for first on-line experiments. Its principle, setup and performance will be discussed. An ion beam cooler and buncher has been developed fo…
Observation of a dramatic hindrance of the nuclear decay of isomeric states for fully ionized atoms
Abstract The half-lives of isomeric states of fully ionized 144Tb, 149Dy and 151Er have been measured. These nuclides were produced via fragmentation of about 900 MeV/u 209Bi projectiles, separated in flight with the fragment separator (FRS) and stored in the cooler ring (ESR). The decay times of the cooled fragments have been measured with time-resolved Schottky spectrometry. We observed for the first time drastic increases of the half-lives of bare isomers by factors of up to 30 compared to their neutral counterparts. This is due to the exclusion of the strong internal conversion and electron-capture channels in the radioactive decay of these bare nuclei. The experimental results are in g…
Nature of seniority symmetry breaking in the semimagic nucleus $^{94}Ru$
Physical review / C 105(3), L031304 (2022). doi:10.1103/PhysRevC.105.L031304
Energy and range focusing of in-flight separated exotic nuclei – A study for the energy-buncher stage of the low-energy branch of the Super-FRS
Abstract The relative momentum spread of in-flight separated exotic nuclear beams produced in fragmentation and/or fission reactions is of the order of a few percent. A new technique is presented, which reduces the momentum spread significantly, and first experimental results obtained with relativistic projectile fragments are shown. This technique is the key to experiments with slowed-down and stopped beams, in particular for the efficient stopping of relativistic exotic nuclei in gas-filled stopping cells. It will be employed at the energy-buncher stage of the low-energy branch of the Super-FRS facility. The ion-optical design of the energy buncher is presented and a brief outlook to the …
Direct mass measurements on neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer
The masses of Xe isotopes with 124 A 114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500000 was chosen resulting in an accuracy of m 12 keV for all isotopes investigated. Con icts with existing mass data of several standard deviations were found. peerReviewed
Continuum excitations in6He
T. Aumann et al. ; 11 pags.; 6 figs.; 2 tabs. ; PACS number(s): 27.20.1n, 25.60.Gc, 25.70.De, 29.30.Hs
First spatial isotopic separation of relativistic uranium projectile fragments
Abstract Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z = 92. This achievement has …
Lifetime measurement of neutron-rich even-even molybdenum isotopes
D. Ralet et al. -- 11 pags., 10 figs., 3 tabs.
Giant resonances in unstable oxygen isotopes
Abstract Electromagnetic and nuclear breakup of the neutron-rich Oxygen isotopes ranging from A = 17 to A = 22 is studied experimentally in reactions at energies around 600 MeV/u. The beams were produced in fragmentation reactions and separated by the GSI Fragment Separator FRS. By measuring the four-momenta of all decay products after inelastic scattering and neutron decay of the projectile, the excitation energy is determined. From the differential cross sections dσ dE ∗ for electromagnetic excitation, the E1-strength distributions can be deduced. For 18,20,22O, low-lying dipole strength is observed, exhausting about 5% of the Thomas Reiche Kuhn sumrule for energies up to 5 MeV above the …
First isochronous mass spectrometry at the experimental storage ring ESR
Short-lived exotic nuclei can be produced and separated with the high-energy secondary nuclear beam facility FRS at GSI. These nuclides can be injected and stored in the storage ring ESR. The lower lifetime limit of the presently existing methods for mass measurements on these nuclides at the ESR is about a few seconds. We have developed and investigated an isochronous operational mode of the ESR, that makes mass measurements of nuclides with lifetimes down to a few ls feasible. It has been commissioned in experiments using long-lived nuclides with known masses. A mass resolving power of about 150 000 has been achieved in a "rst pilot experiment. A suitable detector system has been implemen…
Dawning of the N=32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes
A precision mass investigation of the neutron-rich titanium isotopes 51 − 55 Ti was performed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure, and the overall uncertainties of the 52 − 55 Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N = 32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements a…
Searching for the 5H resonance in the t+n+n system
19 pages, 7 figures, 2 tables, 2 appendices.-- PACS nrs.: 27.10.+h; 25.60.Gc.-- Printed version published Jul 28, 2003.
Direct mass measurements above uranium bridge the gap to the island of stability
The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended d…
High-resolution, accurate MR-TOF-MS for short-lived, exotic nuclei of few events in their ground and low-lying isomeric states
Mass measurements of fission and projectile fragments, produced via $^{238}$U and $^{124}$Xe primary beams, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with a mass resolving powers (FWHM) up to 410,000 and an uncertainty of $6\cdot 10^{-8}$. The nuclides were produced and separated in-flight with the fragment separator FRS at 300 to 1000 MeV/u and thermalized in a cryogenic stopping cell. The data-analysis procedure was developed to determine with highest accuracy the mass values and the corresponding uncertainties for the most challenging conditions: down to a few events in a spectrum and overlapping distributions, ch…
Breakdown of the Isobaric Multiplet Mass Equation atA=33,T=3/2
Mass measurements on ${}^{33,34,42,43}\mathrm{Ar}$ were performed using the Penning trap mass spectrometer ISOLTRAP and a newly constructed linear Paul trap. This arrangement allowed us, for the first time, to extend Penning trap mass measurements to nuclides with half-lives below one second ( ${}^{33}\mathrm{Ar}$: ${T}_{1/2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}174\mathrm{ms}$). A mass accuracy of about ${10}^{\ensuremath{-}7}$ $(\ensuremath{\delta}m\ensuremath{\approx}4\mathrm{keV})$ was achieved for all investigated nuclides. The isobaric multiplet mass equation was checked for the $A\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}33$, $T\phantom{\rule{0ex}{0ex}}=\phantom…
Production and trapping of carbon clusters for absolute mass measurements at ISOLTRAP
Singly-charged carbon clusters C/sub n//sup +/ (n >or= 1) have been produced by laser-induced desorption and fragmentation of C/sub 60/ fullerenes and have been injected into and stored in the Penning trap system of the ISOLTRAP mass spectrometer at ISOLDE/CERN. The present study is the first step to extend the until now direct mass measurements at ISOLTRAP to absolute mass measurements by using clusters of /sup 12/C. (10 refs).
Accurate masses of neutron-deficient nuclides close to
Abstract Mass measurements with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN are extended to nonsurface ionizable species using newly developed ion-beam bunching devices. Masses of 179–197Hg, 196,198Pb, 197Bi, 198Po and 203At were determined with an accuracy of 1×10 −7 corresponding to δm≈20 keV. Applying a resolving power of up to 3.7×10 6 ground and isomeric states of 185,187,191,193,197Hg were separated. First experimental values for the isomeric excitation energy of 187,191Hg are obtained. A least-squares adjustment has been performed and theoretical approaches are discussed to model the observed fine structure in the binding energy.
Photoneutron cross sections for unstable neutron-rich oxygen isotopes.
The dipole response of stable and unstable neutron-rich oxygen nuclei of masses A = 17 to A = 22 has been investigated experimentally utilizing electromagnetic excitation in heavy-ion collisions at beam energies about 600 MeV/nucleon. A kinematically complete measurement of the neutron decay channel in inelastic scattering of the secondary beam projectiles from a Pb target was performed. Differential electromagnetic excitation cross sections d sigma/dE were derived up to 30 MeV excitation energy. In contrast to stable nuclei, the deduced dipole strength distribution appears to be strongly fragmented and systematically exhibits a considerable fraction of low-lying strength.
Invariant-mass spectroscopy of $^{10}$Li and $^{11}$Li
Break-up of secondary Li-11 ion beams (280 MeV/nucleon) on C and Pb targets into Li-9 and neutrons is studied experimentally. Cross sections and neutron multiplicity distributions are obtained, characterizing different reaction mechanisms. Invariant-mass spectroscopy for Li-11 and Li-10 is performed. The E1 strength distribution, deduced from electromagnetic excitation of Li-11 up to an excitation energy of 4 MeV comprises similar to 8% of the Thomas-Reiche-Kuhn energy-weighted sumrule strength. Two low-lying resonance-like structures are observed for Li-10 at decay energies of 0.21(5) and 0.62(10) MeV, the former one carrying 26(10)% of the strength and likely to be associated with an s-wa…
Towards Shorter-Lived Nuclides in ISOLTRAP Mass Measurements
Recently, the applicability of Penning trap mass spectrometry has been extended to nuclides with a half-life of less than one second. The mass of 33Ar(T 1/2 = 174 ms) was measured using the ISOLTRAP spectrometer with an accuracy of 4.2 keV. This measurement provided a stringent test of the Isobaric Multiplet Mass Equation (IMME) at mass number A = 33 and isospin T = 3/2. The fast measurement cycle that shows the way to other measurements of very-short-lived nuclides is presented. Furthermore, the results of the IMME test are displayed.
Extension of Penning-trap mass measurements to very short-lived nuclides
Abstract Mass measurements on 33,34,42,43 Ar have been performed at the ISOLTRAP spectrometer. An accuracy of δm ≈4 keV has been achieved for all measured isotopes. With 33 Ar it is the first time that a nuclide with a half-life shorter than one second has been investigated using a Penning trap. This became possible due to the recently installed linear radio-frequency ion-trap system and an improved, faster measurement cycle.
Neutron momentum distributions from "core break-up" reactions of halo nuclei
Neutron angular distributions from violent break-up reactions of Li-11 and Be-11 have been measured at 28 MeV/u and 280 MeV/u and at 41 MeV/u and 460 MeV/u, respectively. The derived neutron momentum distributions show a narrow component in transverse momentum that is within uncertainties independent of beam energy and target charge. This component is suggested to be simply related to the momentum distribution of the loosely bound halo neutron(s) in the projectiles.
Simultaneous Measurement ofβ−Decay to Bound and Continuum Electron States
We report the first measurement of a ratio {lambda}{sub {beta}{sub b}}/{lambda}{sub {beta}{sub c}} of bound-state ({lambda}{sub {beta}{sub b}}) and continuum-state ({lambda}{sub {beta}{sub c}}) {beta}{sup -}-decay rates for the case of bare {sup 207}Tl{sup 81+} ions. These ions were produced at the GSI fragment separator FRS by projectile fragmentation of a {sup 208}Pb beam. After in-flight separation with the B{rho}-{delta}E-B{rho} method, they were injected into the experimental storage-ring ESR at an energy of 400.5A MeV, stored, and electron cooled. The number of both the {sup 207}Tl{sup 81+} ions and their bound-state {beta}{sup -}-decay daughters, hydrogenlike {sup 207}Pb{sup 81+} ion…
Measurement of the dipole response of neutron-rich nuclei in the A∼20 region
Abstract Coulomb break up of the neutron-rich 15,17 C and 17–22 O isotopes has been studied experimentally using secondary beams at energies of 500–600 MeV/u. A comparison between differential cross sections, d σ/ d E ∗ , with that obtained from a binary model shows that the main ground-state configuration of 15 C is 14 C(0 + )⊗ ν S 1/2 as expected. For 17 C, our preliminary data analysis reveals that the predominant (∼64%) configuration of the ground state is 16 C(2 + )⊗ ν s , d . For 17–22 O, the low-lying E1 strength amounts up to about 12% of the energy weighted sum rule strength depending on neutron number. The energy weighted E1 strength (integrated up to 15 MeV excitation energy) inc…
Dissociation of 8He into 6He + n + X at 240 MeV/u
4 pages, 3 figures, 2 tables.
Fragmentation of exotic oxygen isotopes
Abrasion-ablation models and the empirical EPAX parametrization of projectile fragmentation are described. Their cross section predictions are compared to recent data of the fragmentation of secondary beams of neutron-rich, unstable 19,20,21O isotopes at beam energies near 600 MeV/nucleon as well as data for stable 17,18O beams.
New results with stored exotic nuclei at relativistic energies
Recently, much progress has been made with stored exotic nuclei at relativistic velocities ( v c = 0.7 ) . Fragments of 208Pb and 209Bi projectiles and fission products from 238U ions were produced, separated in flight with the fragment separator FRS, and injected into the storage-cooler ring ESR for precision measurements. 114 new masses of neutron-deficient isotopes in the lead region have been measured with time-resolved Schottky Mass Spectrometry (SMS). A new isospin dependence of the pairing energy was observed due to the improved mass accuracy of typically 1.5×10-7 (30 keV). New masses of short-lived neutron-rich fission fragments have been obtained with Isochronous Mass Spectrometry …
β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N=126
Background: Previous measurements of Beta-delayed neutron emitters comprise around 230 nuclei, spanning from the 8He up to 150La. Apart from 210Tl, with a minuscule branching ratio of 0.07%, no other neutron emitter is measured yet beyond A = 150. Therefore new data are needed, particularly in the heavy mass region around N=126, in order to guide theoretical models and to understand the formation of the third r-process peak at A 195. Purpose: To measure both, Beta-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb and Bi isotopes beyond N = 126. Method: Ions of interest are produced by fragmentation of a 238U beam, selected and identifed via the GSI-FRS fra…
Study of Basic Nuclear Properties of Highly-Charged, Unstable Nuclei at the SIS-FRS-ESR Complex
Recent progress in experiments with exotic nuclear beams at the SIS-FRS-ESR facility is summarized. New results on gross properties of exotic nuclei like binding energy, half-lives, and decay modes are presented. A brief outlook to future experiments is given.
Experimental Setup for hypernuclear study at the Super-FRS
GSI Scientific Report 2013 - GSI Report 2014-1
Recent Upgrades of the SHIPTRAP Setup: On the Finish Line Towards Direct Mass Spectroscopy of Superheavy Elements
With the Penning-trap mass spectrometer SHIPTRAP at GSI, Darmstadt, it is possible to investigate exotic nuclei in the region of the heaviest elements. Few years ago, challenging experiments led to the direct measurements of the masses of neutron-deficient isotopes with Z = 102,103 around N = 152. Thanks to recent advances in cooling and ion-manipulation techniques, a major technical upgrade of the setup has been recently accomplished to boost its efficiency. At present, the gap to reach more rare and shorter-lived species at the limits of the nuclear landscape has been narrowed. ispartof: pages:423-429 ispartof: Acta Physica Polonica B vol:48 issue:3 pages:423-429 ispartof: location:Zakopa…
Mass mapping of a new area of neutron-deficient suburanium nuclides
Abstract The masses of 64 short-lived neutron-deficient nuclides covering the element range from tungsten to uranium have been obtained for the first time. They have been evaluated by combining directly measured masses from Schottky mass spectrometry with linked experimental Q-values in α-decay chains. Based on these new mass data we have determined the one-proton and two-proton drip-lines as well as the size of the “littoral shallow” of the sea of instability. No evidence of a Thomas–Ehrman shift has been found in the region of the investigated heavy nuclides. A peculiar behavior of two-proton separation energies has been observed in the lead region. The predictive power of various mass mo…
Study of the Unstable NucleusL10iin Stripping Reactions of the Radioactive ProjectilesB11eandL11i
Reactions of the halo systems Be-11 and Li-11 (at 460 and 280 MeV/nucleon) with a carbon target demonstrate that (n + Li-9) has an (unbound) l = 0 ground state very close to the threshold. The neutron halo of Li-11 has appreciable (1s(1/2))(2) and (0p(1/2))(2) components.
Fast-timing Measurement in \(^{96}\)Pd: Improved Accuracy for the Lifetime of the \(4_1^{+}\) State
Direct lifetime measurements via γ–γ coincidences using the FATIMA fast-timing LaBr3(Ce) array were performed for the excited states below previously reported isomers. In the N = 50 semi-magic 96Pd nucleus, lifetimes below the I π = 8+ seniority isomer were addressed as a benchmark for further analysis. The results for the I π = 2+ and 4 + states confirm the published values. Increased accuracy for the lifetime value was achieved for the 4 + state. peerReviewed
Halo excitations in fragmentation of He at 240 MeV/u on carbon and lead targets
Dissociation of a 240 MeV/u beam of He-6, incident on carbon and lead targets, has been studied in kinematically complete experiments to investigate low-lying excitation modes in the halo nucleus He-6. It is shown that alignment effects characterize the inelastic scattering and allow an unambiguous assignment of the spin of a narrow resonance observed in the excitation energy spectrum. The differential cross sections for the He-6 inelastic scattering on carbon and lead targets were deduced from the measured moments of the two neutrons and the a-particle. An analysis of these distributions shows that quadrupole and, possibly, monopole excitations characterize the hadronic interaction, while …
Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements
Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.
Development and test of iron-free quadrupole lenses with high magnetic flux densities
Abstract Iron-free magnetic quadrupole lenses have been developed for the focusing of energetic bunched heavy-ion beams. These devices are operated in a pulsed mode and provide very strong magnetic fields. A magnetic flux density of more than 14 T has been reached in a 100 mm long quadrupole with a 20 mm wide aperture, which corresponds to a magnetic flux density of ∼1400 T/m. The pulse duration of the applied electric current is approximately 300 μs with a flat top of several μs. The calculated and measured field properties of the quadrupoles are presented. In a first test experiment with a fast-extracted 650 MeV/u 197 Au 79+ beam (bunch length ∼500 ns) at GSI the focusing properties could…
Superallowed Gamow-Teller decay of the doubly magic nucleus $^{100}$Sn
Expérience au GSI; The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During b1-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy fo…
Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis
The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.
The Super-FRS Project at GSI
The GSI projectile fragment separator FRS has demonstrated with many pioneering experiments the research potential of in-flight separators at relativistic energies. Although the present facility has contributed much to the progress in the field of nuclear structure physics, major improvements are desirable in the future. The characteristics of the proposed next-generation facility at GSI, the Super-FRS, will be presented and compared to other projects. The Super-FRS is a large-acceptance superconducting fragment separator followed by different experimental branches including a combination with a new storage-cooler ring system. This system consists of a collector ring (CR) and a new experime…
Direct Mapping of Nuclear Shell Effects in the Heaviest Elements
Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number $Z=114,120$, or $126$ and neutron number $N=184$ has been substantiated by the recent synthesis of new elements up to $Z=118$. However the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at $N=152$.
8He-6He: a comparative study of nuclear fragmentation reactions
19 pages, 3 tables, 6 figures.-- PACS nrs.: 27.20.+n; 24.70.+s; 25.06.-t.-- Available online Dec 4, 2000.
He-8 - He-6: a comparative study of electromagnetic fragmentation reactions
14 pages, 1 table, 2 figures.-- PACS nrs.:27.20.+n; 24.70.+.-- Available online Oct 8, 2001.
The FIRST experiment at GSI
The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSI laboratory in Darmstadt has been designed for the measurement of ion fragmentation cross-sections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an alread…
The dipole response of nuclei with large neutron excess
The dipole response of neutron-rich nuclei in the mass range from A = 10 to A = 22 and with mass to charge ratios of 2.5 to 2.8 has been invesitigated experimentally utilizing electromagnetic excitation in heavy-ion collisions at beam energies around 600 MeV/u.
Mass measurements on unstable Sn and Sr isotopes with the ISOLTRAP mass spectrometer
Direct mass measurements have been performed on the isotopes 76,77,80,81Sr and 129,130,131,132Sn by means of the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. In the case of 76Sr the mass was measured for the first time and an accuracy of about 30 keV was reached (Fig. 1). The masses of the tin isotopes are known for a long time from Q β measurements.
Experiments with stored exotic nuclei at relativistic energies
Abstract A review and recent progress are presented from experiments on masses and lifetimes of bare and few-electron exotic nuclei at GSI. Relativistic rare isotopes produced via projectile fragmentation and fission were separated in flight by the fragment separator FRS and injected into the storage ring ESR. This worldwide unique experimental method gives access to all fragments with half-lives down to the microsecond range. The great research potential is demonstrated by the discovery of new isotopes along with simultaneous mass and lifetime measurements. Single particle decay measurements and the continuous recording of both stored mother and daughter nuclei open up a new era for nuclea…
β-decay and β-delayed Neutron Emission Measurements at GSI-FRS Beyond N=126, for r-process Nucleosynthesis
New measurements of very exotic nuclei in the neutron-rich region beyond N=126 have been performed at the GSI facility with the fragment separator (FRS). The aim of the experiment is to determine half-lives and β-delayed neutron emission branching ratios of isotopes of Hg, Tl and Pb in this region. This contribution summarizes final counting statistics for identification and for implantation, as well as the present status of the data analysis of the half-lives. In summary, isotopes of Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn and Fr were clearly identified and several of them (208-211Hg, 211-215Tl, 214-218Pb) were implanted with enough statistics to determine their half-lives. About half of them a…
Longitudinal and transverse momentum distributions of 9Li fragments from break-up of 11Li
7 pages, 3 figures, 1 table.
Schottky mass measurements of stored and cooled neutron-deficient projectile fragments in the element range of 57≤Z≤84
Abstract A novel method for direct, high precision mass measurements of relativistic exotic nuclei has been successfully applied in the storage ring ESR at GSI. The nuclei of interest were produced by projectile fragmentation of 930 MeV / u bismuth ions, separated in-flight by the fragment separator FRS, stored and cooled in the ESR. The mass values have been deduced from the revolution frequencies of the coasting cooled ions. We have measured 104 new mass values with a precision of about 100 keV and a resolving power of 3.5×10 5 for the neutron-deficient isotopes of the elements 57≤Z≤84 . This paper presents the experimental method, the mass evaluation and a table of the experimental mass …
FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy
International audience; Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the …
"Table 2" of "Few neutron removal from U-238 at relativistic energies"
Uranium fragmentation.
"Table 1" of "Few neutron removal from U-238 at relativistic energies"
Uranium fragmentation.