0000000000300197
AUTHOR
A. Piechaczek
Few-neutron removal from238U at relativistic energies
As part of a comprehensive study of uranium fragmentation at relativistic energies at the GSI projectile fragment separator, FRS, inclusive neutron-removal cross sections have been measured for severalxn channels at projectile energies of 600 and 950A MeV using targets of Al, Cu and Pb. The variation of the experimental cross sections with target nuclear charge is used to disentangle nuclear and electromagnetic contributions. The electromagnetic cross sections agree surprisingly well with a simple harmonic oscillator calculation of giant dipole resonances based on measured photonuclear cross sections and do not require an extra enhancement of the two-phonon giant dipole excitation as conclu…
New subshell closure atN=58emerging in neutron-rich nuclei beyondNi78
The structure of neutron-rich nuclei beyond $^{78}\mathrm{Ni}$ was studied using postaccelerated radioactive beams of $^{83,84,85}\mathrm{Ga}$ utilizing $\ensuremath{\beta} \ensuremath{\gamma}$ and $\ensuremath{\beta}\ensuremath{-}n \ensuremath{\gamma}$ spectroscopy. Our data, when combined with energy level systematics, suggests a possible new spherical subshell closure at $N=58$ is created by the nearly degenerated $\ensuremath{\nu}3{s}_{1/2}$ and $\ensuremath{\nu}2{d}_{5/2}$ orbitals being well separated from other orbitals above $N=50$. The near degeneracy of these states could be evidenced by isomerism in this region. The energies of the ${2}_{1}^{+}$ and proposed ${4}_{1}^{+}$ states …
First spatial isotopic separation of relativistic uranium projectile fragments
Abstract Spatial isotopic separation of relativistic uranium projectile fragments has been achieved for the first time. The fragments were produced in peripheral nuclear collisions and spatially separated in-flight with the fragment separator FRS at GSI. A two-fold magnetic-rigidity analysis was applied exploiting the atomic energy loss in specially shaped matter placed in the dispersive central focal plane. Systematic investigations with relativistic projectiles ranging from oxygen up to uranium demonstrate that the FRS is a universal and powerful facility for the production and in-flight separation of monoisotopic, exotic secondary beams of all elements up to Z = 92. This achievement has …
Shell structure beyond the proton drip line studied via proton emission from deformed 141Ho
Abstract Fine structure in proton emission from the 7 / 2 − [ 523 ] ground state and from the 1 / 2 + [ 411 ] isomer in deformed nucleus 141Ho was studied by means of fusion-evaporation reactions and digital signal processing. Proton transitions to the first excited 2+ state in 140Dy, with the branching ratio of I p g s ( 2 + ) = 0.9 ± 0.2 % and I p m ( 2 + ) = 1.7 ± 0.5 % , were observed. The data are analyzed within the non-adiabatic weak coupling model assuming a large quadrupole deformation of the daughter nucleus 140Dy as predicted by the self-consistent theory. Implications of this result on coexistence effects around N = 74 are discussed. Significant modifications of the proton shell…
Beta decay of the new isotope101Sn
The very neutron-deficient isotope 101Sn was produced in a 50Cr(58Ni, 2p5n) reaction and its decay properties were determined for the first time. By using chemically selective ion sources of an on-line mass separator, the energy spectrum and the half-life (3 ± 1 s) of beta-delayed protons of 101Sn were measured. These results are compared to theoretical predictions.
"Table 2" of "Few neutron removal from U-238 at relativistic energies"
Uranium fragmentation.
"Table 1" of "Few neutron removal from U-238 at relativistic energies"
Uranium fragmentation.