0000000000093116

AUTHOR

J. L. Sanz

Partition function based analysis of CMB maps

We present an alternative method to analyse cosmic microwave background (CMB) maps. We base our analysis on the study of the partition function. This function is used to examine the CMB maps making use of the different information embedded at different scales and moments. Using the partition function in a likelihood analysis in two dimensions (Q_rms,n), we find the best-fitting model to the best data available at present the COBE--DMR 4 years data set. By means of this analysis we find a maximum in the likelihood function for n=1.8 (-0.65 +0.35) and Q_rms-PS = 10 (-2.5 +3) muK (95 % confidence level) in agreement with the results of other similar analyses (Smoot et al. 1994 (1 yr), Bennet e…

research product

Post-post-Newtonian effects on a clean nearly-Newtonian binary

Etude du taux de changement temporel moyen de l'energie newtonienne et du moment d'une binaire presque newtonienne, ponctuelle. On trouve qu'il faut ajouter quelques termes post-post newtoniens non seculaires aux flux radiatifs seculaires standards. Les termes post-post newtoniens tendent vers zero pour l'observateur du centre de masse newtonien dans le cas de l'energie mais pas dans le cas du moment. Du fait de la longue periode de ces termes ils sont observationnellement significatifs, c'est-a-dire qu'ils vont apparaitre comme s'ils etaient des effets seculaires

research product

The roughness of the last scattering surface

We propose an alternative analysis of the microwave background temperature anisotropy maps that is based on the study of the roughness of natural surfaces. We apply it to large angle anisotropies, such as those measured by COBE-DMR. We show that for a large signal to noise experiment, the spectral index can be determined independently of the normalization. We then analyze the 4 yr COBE map and find for a flat $\Omega=1$ universe, that the best-fitting value for the spectral index is $n = 1.15^{+0.39}_{-0.34}$ and for the amplitude $Q_{rms-PS}= 14.1^{+3.9}_{-3.5}\mu K$. For $n=1$, the best-fitting normalization is $Q_{rms-PS}|_{n=1}= 16.2^{+1.4}_{-1.3}\mu K$.

research product

Joint constraints on galaxy bias and σ8 through the N-pdf of the galaxy number density

We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on the bias parameter), and of those parameters defining …

research product

Partition function based analysis of cosmic microwave background maps

We present an alternative method to analyse cosmic microwave background (CMB) maps. We base our analysis on the study of the partition function. This function is used to examine the CMB maps, making use of the different information embedded at different scales and moments. Using the partition function in a likelihood analysis in two dimensions (Qrms-PS, n), we find the best-fitting model to the best data available at present (the COBE–DMR 4 years data set). By means of this analysis we find a maximum in the likelihood function for n=1.8-0.65+0.35 and Qrms-PS = 10-2.5+3μ K (95 per cent confidence level) in agreement with the results of other similar analyses [Smoot et al. (1 yr), Bennet et a…

research product