0000000000094598
AUTHOR
Borja Galan
Towards a Functional Explanation of the Connectivity LGN - V1
The principles behind the connectivity between LGN and V1 are not well understood. Models have to explain two basic experimental trends: (i) the combination of thalamic responses is local and it gives rise to a variety of oriented Gabor-like receptive felds in V1 [1], and (ii) these filters are spatially organized in orientation maps [2]. Competing explanations of orientation maps use purely geometrical arguments such as optimal wiring or packing from LGN [3-5], but they make no explicit reference to visual function. On the other hand, explanations based on func- tional arguments such as maximum information transference (infomax) [6,7] usually neglect a potential contribution from LGN local…
Derivatives and inverse of a linear-nonlinear multi-layer spatial vision model
Linear-nonlinear transforms are interesting in vision science because they are key in modeling a number of perceptual experiences such as color, motion or spatial texture. Here we first show that a number of issues in vision may be addressed through an analytic expression of the Jacobian of these linear-nonlinear transforms. The particular model analyzed afterwards (an extension of [Malo & Simoncelli SPIE 2015]) is illustrative because it consists of a cascade of standard linear-nonlinear modules. Each module roughly corresponds to a known psychophysical mechanism: (1) linear spectral integration and nonlinear brightness-from-luminance computation, (2) linear pooling of local brightness…