6533b7cefe1ef96bd1257671
RESEARCH PRODUCT
Towards a Functional Explanation of the Connectivity LGN - V1
Marina Martinez-garciaBorja GalanLuis M MartinezJesus Malosubject
Computational NeuroscienceV1connectivityLGNinformation maximizationdescription
The principles behind the connectivity between LGN and V1 are not well understood. Models have to explain two basic experimental trends: (i) the combination of thalamic responses is local and it gives rise to a variety of oriented Gabor-like receptive felds in V1 [1], and (ii) these filters are spatially organized in orientation maps [2]. Competing explanations of orientation maps use purely geometrical arguments such as optimal wiring or packing from LGN [3-5], but they make no explicit reference to visual function. On the other hand, explanations based on func- tional arguments such as maximum information transference (infomax) [6,7] usually neglect a potential contribution from LGN local circuitry. In this work we explore the abil- ity of the conventional functional arguments (infomax and variants), to derive both trends simultaneously assuming a plausible sampling model linking the retina to the LGN [8], as opposed to previous attempts operating from the retina. Consistently with other aspects of human vi- sion [14-16], additional constraints should be added to plain infomax to understand the second trend of the LGN-V1 con- nectivity. Possibilities include energy budget [11], wiring constraints [8], or error minimization in noisy systems, ei- ther linear [16] or nonlinear [14, 15]. In particular, consideration of high noise (neglected here) would favor the redundancy in the prediction (which would be required to match the relations between spatially neighbor neurons in the same orientation domain).
year | journal | country | edition | language |
---|---|---|---|---|
2016-05-12 |