0000000000094600
AUTHOR
Jesus Malo
Towards a Functional Explanation of the Connectivity LGN - V1
The principles behind the connectivity between LGN and V1 are not well understood. Models have to explain two basic experimental trends: (i) the combination of thalamic responses is local and it gives rise to a variety of oriented Gabor-like receptive felds in V1 [1], and (ii) these filters are spatially organized in orientation maps [2]. Competing explanations of orientation maps use purely geometrical arguments such as optimal wiring or packing from LGN [3-5], but they make no explicit reference to visual function. On the other hand, explanations based on func- tional arguments such as maximum information transference (infomax) [6,7] usually neglect a potential contribution from LGN local…
Derivatives and inverse of a linear-nonlinear multi-layer spatial vision model
Linear-nonlinear transforms are interesting in vision science because they are key in modeling a number of perceptual experiences such as color, motion or spatial texture. Here we first show that a number of issues in vision may be addressed through an analytic expression of the Jacobian of these linear-nonlinear transforms. The particular model analyzed afterwards (an extension of [Malo & Simoncelli SPIE 2015]) is illustrative because it consists of a cascade of standard linear-nonlinear modules. Each module roughly corresponds to a known psychophysical mechanism: (1) linear spectral integration and nonlinear brightness-from-luminance computation, (2) linear pooling of local brightness…
Information Theory Measures via Multidimensional Gaussianization
Information theory is an outstanding framework to measure uncertainty, dependence and relevance in data and systems. It has several desirable properties for real world applications: it naturally deals with multivariate data, it can handle heterogeneous data types, and the measures can be interpreted in physical units. However, it has not been adopted by a wider audience because obtaining information from multidimensional data is a challenging problem due to the curse of dimensionality. Here we propose an indirect way of computing information based on a multivariate Gaussianization transform. Our proposal mitigates the difficulty of multivariate density estimation by reducing it to a composi…
Appropriate kernels for Divisive Normalization explained by Wilson-Cowan equations
The interaction between wavelet-like sensors in Divisive Normalization is classically described through Gaussian kernels that decay with spatial distance, angular distance and frequency distance. However, simultaneous explanation of (a) distortion perception in natural image databases and (b) contrast perception of artificial stimuli requires very specific modifications in classical Divisive Normalization. First, the wavelet response has to be high-pass filtered before the Gaussian interaction is applied. Then, distinct weights per subband are also required after the Gaussian interaction. In summary, the classical Gaussian kernel has to be left- and right-multiplied by two extra diagonal ma…