0000000000098331

AUTHOR

Francesca Dalbono

showing 15 related works from this author

Morse-Smale index theorems for elliptic boundary deformation problems.

2012

AbstractMorse-type index theorems for self-adjoint elliptic second order boundary value problems arise as the second variation of an energy functional corresponding to some variational problem. The celebrated Morse index theorem establishes a precise relation between the Morse index of a geodesic (as critical point of the geodesic action functional) and the number of conjugate points along the curve. Generalization of this theorem to linear elliptic boundary value problems appeared since seventies. (See, for instance, Smale (1965) [12], Uhlenbeck (1973) [15] and Simons (1968) [11] among others.) The aim of this paper is to prove a Morse–Smale index theorem for a second order self-adjoint el…

Pure mathematicsGeodesicApplied MathematicsMathematical analysisMixed boundary conditionSpectral flow Maslov index Index Theory Elliptic boundary value problemsElliptic boundary value problemsElliptic boundary value problemElliptic boundary deformation problemMaslov indexNeumann boundary conditionFree boundary problemSpectral flowElliptic boundary deformation problemsIndex TheoryBoundary value problemAtiyah–Singer index theoremAnalysisEnergy functionalMathematics
researchProduct

Nodal Solutions for Supercritical Laplace Equations

2015

In this paper we study radial solutions for the following equation $$\Delta u(x)+f (u(x), |x|) = 0,$$ where $${x \in {\mathbb{R}^{n}}}$$ , n > 2, f is subcritical for r small and u large and supercritical for r large and u small, with respect to the Sobolev critical exponent $${2^{*} = \frac{2n}{n-2}}$$ . The solutions are classified and characterized by their asymptotic behaviour and nodal properties. In an appropriate super-linear setting, we give an asymptotic condition sufficient to guarantee the existence of at least one ground state with fast decay with exactly j zeroes for any j ≥ 0. Under the same assumptions, we also find uncountably many ground states with slow decay, singular gro…

Laplace transform010102 general mathematicsMathematical analysisInvariant manifoldStatistical and Nonlinear Physicsradial solutionLaplace equations radial solutions regular/singular ground state Fowler inversion invariant manifoldLaplace equation01 natural sciencesSupercritical fluidinvariant manifold.010101 applied mathematicsSobolev spaceregular/singular ground stateTransformation (function)Structural stabilityFowler inversion0101 mathematicsGround stateCritical exponentMathematical PhysicsMathematicsMathematical physics
researchProduct

Multiplicity results for asymmetric boundary value problems with indefinite weights

2004

We prove existence and multiplicity of solutions, with prescribed nodal properties, to a boundary value problem of the formu″+f(t,u)=0,u(0)=u(T)=0. The nonlinearity is supposed to satisfy asymmetric, asymptotically linear assumptions involving indefinite weights. We first study some auxiliary half-linear, two-weighted problems for which an eigenvalue theory holds. Multiplicity is ensured by assumptions expressed in terms of weighted eigenvalues. The proof is developed in the framework of topological methods and is based on some relations between rotation numbers and weighted eigenvalues.

lcsh:MathematicsApplied MathematicsMultiplicity resultsMathematical analysis34B15Of the formMultiplicity (mathematics)Mixed boundary conditionlcsh:QA1-939Asymmetric boundary value problem asymptotically linear two-weighted problems eigenvalue theory topological methods rotation number multiplicity resultFree boundary problemBoundary value problemAnalysisMathematicsAbstract and Applied Analysis
researchProduct

Multiplicity results for systems of asymptotically linear second order equations

2002

Abstract We prove the existence and multiplicity of solutions, with prescribed nodal properties, for a BVP associated with a system of asymptotically linear second order equations. The applicability of an abstract continuation theorem is ensured by upper and lower bounds on the number of zeros of each component of a solution.

Asymptotically linearAsymptotically linear second order system continuation theoremGeneral MathematicsMultiplicity resultsMathematical analysisSecond order equationStatistical and Nonlinear PhysicsMathematicsAdvanced Nonlinear Studies
researchProduct

Multiplicity results for a class of asymmetric weakly coupled systems of second order ordinary differential equations

2005

We prove the existence and multiplicity of solutions to a two-point boundary value problem associated to a weakly coupled system of asymmetric second-order equations. Applying a classical change of variables, we transform the initial problem into an equivalent problem whose solutions can be characterized by their nodal properties. The proof is developed in the framework of the shooting methods and it is based on some estimates on the rotation numbers associated to each component of the solutions to the equivalent system.

Algebra and Number TheoryMathematical analysislcsh:QA299.6-433lcsh:AnalysisExponential integratorStochastic partial differential equationLinear differential equationCollocation methodOrdinary differential equationmultiplicity result asymmetric weakly coupled system nodal solutions rotation numberBoundary value problemAnalysisMathematicsSeparable partial differential equationNumerical partial differential equations
researchProduct

Multiplicity results for asymptotically linear equations, using the rotation number approach

2007

By using a topological approach and the relation between rotation numbers and weighted eigenvalues, we give some multiplicity results for the boundary value problem u′′ + f(t, u) = 0, u(0) = u(T) = 0, under suitable assumptions on f(t, x)/x at zero and infinity. Solutions are characterized by their nodal properties.

Asymptotically linearGeneral MathematicsMultiplicity resultsmedia_common.quotation_subjectMathematical analysisZero (complex analysis)InfinityBoundary value problem continuation theorem shooting without uniqueness rotation number Sturm–Liouville Theory weighted eigenvalue multiplicity resultBoundary value problemRotation (mathematics)Eigenvalues and eigenvectorsRotation numberMathematicsmedia_common
researchProduct

A Multiplicity result for a class of strongly indefinite asymptotically linear second order systems

2010

We prove a multiplicity result for a class of strongly indefinite nonlinear second order asymptotically linear systems with Dirichlet boundary conditions. The key idea for the proof is to bring together the classical shooting method and the Maslov index of the linear Hamiltonian systems associated to the asymptotic limits of the given nonlinearity.

Class (set theory)Pure mathematicsApplied MathematicsMathematical analysisLinear systemMultiplicity (mathematics)34B15 37J05 53C50Functional Analysis (math.FA)Hamiltonian systemMathematics - Functional AnalysisNonlinear systemsymbols.namesakeShooting methodMathematics - Classical Analysis and ODEsSettore MAT/05 - Analisi MatematicaDirichlet boundary conditionClassical Analysis and ODEs (math.CA)FOS: MathematicssymbolsOrder (group theory)Multiplicity Asymptotically linear BVP Maslov index Phase angleAnalysisMathematics
researchProduct

Multiplicity of ground states for the scalar curvature equation

2019

We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we ar…

Multiplicity resultsBubble tower solutions; Fowler transformation; Ground states; Invariant manifold; Multiplicity results; Phase plane analysis; Scalar curvature equation; Shooting methodGround stateMultiplicity resultsInvariant manifoldScalar curvature equation01 natural sciencesBubble tower solutionsCombinatoricsSettore MAT/05 - Analisi Matematica0103 physical sciencesinvariant manifoldground stateScalar curvature equation Ground states Fowler transformation Invariant manifold Shooting method Bubble tower solutions Phase plane analysis Multiplicity resultsFowler transformationMultiplicity result0101 mathematicsphase plane analysiPhase plane analysisPhysicsApplied Mathematics010102 general mathematicsscalar curvature equationShooting methodMultiplicity (mathematics)shooting methodPhase plane analysiGround statesBubble tower solutionbubble tower solutionmultiplicity results.Phase plane analysis010307 mathematical physicsInvariant manifoldScalar curvature
researchProduct

Branches of index-preserving solutions to systems of second order ODEs

2009

We investigate the existence of a continuum of index-preserving solutions to a Dirichlet problem associated with a parameter-dependent system of second order ordinary differential equations, developing a detailed analysis on the behaviour of the branches of nontrivial solutions. Our approach is based on the Rabinowitz global bifurcation Theorem combined with the notion of index and nullity of suitable linear boundary value problems. An application of the result to the study of branches of odd, periodic solutions for suitable systems of two linearly coupled pendulums of lenghts variables is also analyzed.

Dirichlet problemContinuum (topology)Applied MathematicsMathematical analysisOdesymbols.namesakeDirichlet boundary conditionOrdinary differential equationsymbolsOrder (group theory)Second order systems Index-preserving solutions BifurcationBoundary value problemAnalysisBifurcationMathematics
researchProduct

Multiplicity of Radial Ground States for the Scalar Curvature Equation Without Reciprocal Symmetry

2022

AbstractWe study existence and multiplicity of positive ground states for the scalar curvature equation $$\begin{aligned} \varDelta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n\,, \quad n>2, \end{aligned}$$ Δ u + K ( | x | ) u n + 2 n - 2 = 0 , x ∈ R n , n > 2 , when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ K : R + → R + is bounded above and below by two positive constants, i.e. $$0<\underline{K} \le K(r) \le \overline{K}$$ 0 < K ̲ ≤ K ( r ) ≤ K ¯ for every $$r > 0$$ r > 0 , it is decreasing in $$(0,{{{\mathcal {R}}}})$$ ( 0 , R ) and increasing in $$({{{\mathcal {R}}}},+\infty )$$ ( R , + ∞ ) for a certain $${{{\mathcal {R}}}}&g…

Multiplicity resultsGround state010102 general mathematicsMultiplicity (mathematics)Scalar curvature equation01 natural sciencesPhase plane analysiGround statesBubble tower solutions010101 applied mathematicsCombinatoricsSettore MAT/05 - Analisi MatematicaBubble tower solutionFowler transformationScalar curvature equation; Ground states; Fowler transformation; Invariant manifold; Bubble tower solutions; Phase plane analysis; Multiplicity resultsMultiplicity result0101 mathematicsNon-perturbativeInvariant manifoldGround stateAnalysisReciprocalPhase plane analysisScalar curvatureMathematicsJournal of Dynamics and Differential Equations
researchProduct

Radial solutions of Dirichlet problems with concave-convex nonlinearities

2011

Abstract We prove the existence of a double infinite sequence of radial solutions for a Dirichlet concave–convex problem associated with an elliptic equation in a ball of R n . We are interested in relaxing the classical positivity condition on the weights, by allowing the weights to vanish. The idea is to develop a topological method and to use the concept of rotation number. The solutions are characterized by their nodal properties.

Dirichlet problemNon lineariteApplied MathematicsMathematical analysisRegular polygonRadial solutions Multiplicity results Dirichlet concave–convex problem Rotation numberDirichlet distributionElliptic curveNonlinear systemsymbols.namesakesymbolsBall (mathematics)AnalysisRotation numberMathematics
researchProduct

Poincar é-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems. (Turin Fortnight Lectures on Nonli…

2002

Poincaré-Birkhoff theorem historical remarks multiplicity results
researchProduct

Multiplicity of solutions for asymptotically linear $n$-th order boundary value problems

2007

In this paper we investigate existence and multiplicity of solutions, with prescribed nodal properties, to a two-point boundary value problem of asymptotically linear $n$-th order equations. The proof follows a shooting approach and it is based on the weighted eigenvalue theory for linear $n$-th order boundary value problems

n-th order problem asymptotically linear multiplicity results shooting approach weighted eigenvalues
researchProduct

Risultati di molteplicità per problemi ai limiti superlineari e asintoticamente lineari

2004

No abstract available

Settore MAT/05 - Analisi MatematicaRisultati di molteplicità asintoticamente lineare e superlineare asimmetria teorema di continuazione autovalore con peso teoria di Sturm
researchProduct

Singular solutions to a quasilinear ODE

2005

In this paper, we prove the existence of infinitely many radial solutions having a singular behaviour at the origin for a superlinear problem of the form $-\Delta_pu=|u|^{\delta-1}u$ in $B(0,1)\setminus\{0\}\subset\mathbb R^N$,\, $u=0$ for $|x|=1$, where $N>p>1$ and $\delta>p-1$. Solutions are characterized by their nodal properties. The case $\delta+1 <\frac{Np}{N-p}$ is treated. The study of the singularity is based on some energy considerations and takes into account the classification of the behaviour of the possible solutions available in the literature. By following a shooting approach, we are able to deduce the main multiplicity result from some estimates on the rotation numbers asso…

Applied Mathematics34B1634B15Singular solutions superlinear problem multiplicity result p-Laplacian equation rotation number radial solutionsAnalysis35J60
researchProduct