0000000000105296
AUTHOR
David Hinde
Chemical studies of Fl (element 114): Heaviest chemically studied element
Systematic evidence for quasifission in Be9−, C12−, and O16 -induced reactions forming No258,260
Towards saturation of the electron-capture delayed fission probability: The new isotopes $^{240}Es$ and $^{236}Bk$
Abstract The new neutron-deficient nuclei 240 Es and 236 Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240 Es produced in the fusion–evaporation reaction 209 Bi( 34 S,3n) 240 Es. Half-lives of 6 ( 2 ) s and 22 − 6 + 13 s were obtained for 240 Es and 236 Bk, respectively. Two groups of α particles with energies E α = 8.19 ( 3 ) MeV and 8.09 ( 3 ) MeV were unambiguously assigned to 240 Es. Electron-capture delayed fission branches with probabilities of 0.16 ( 6 ) and 0.04 ( 2 ) were measured for 240 Es and 236 Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilitie…
Zeptosecond contact times for element Z=120 synthesis
The synthesis of new superheavy elements beyond oganesson (Z=118) requires fusion reactions with projectile nuclei with proton numbers larger than that of $^{48}$Ca (Z=20), which has been successfully employed for the synthesis of elements with Z=112-118. In such reactions, fusion is drastically hindered by fast non-equilibrated dynamical processes. Attempts to produce nuclei with Z=120 using the $^{64}$Ni+$^{238}$U, $^{58}$Fe+$^{244}$Pu, $^{54}$Cr+$^{248}$Cm, and $^{50}$Ti+$^{249}$Cf reactions have been made, which all result in larger Coulomb forces than for $^{48}$Ca-induced reactions, but no discovery has been confirmed to date. In this work, mass and angle distributions of fission frag…
Study of fusion reactions forming Cf nuclei
The formation of a compound nucleus in different projectile and target combinations is a powerful method for investigating the fusion process. Recently, the dominance of quasi-fission over fusion-fission has been inferred for 34 S+208 Pb in comparison to 36 S+206 Pb; both reactions lead to the compound nucleus 242 Cf* .The mass and angle distributions of the fission fragments from these reactions were studied in order to further investigate the presence of quasi-fission.
Ca48+Bk249Fusion Reaction Leading to ElementZ=117: Long-Livedα-DecayingDb270and Discovery ofLr266
The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294-117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-liv…
Nuclear structure dependence of fusion hindrance in heavy element synthesis
The production of the heaviest elements in fusion-evaporation reactions is substantially limited by very low cross sections, as fusion cross sections (including fusion-fission) are greatly reduced by the competing quasifission mechanism. Using the Australian National University Heavy Ion Accelerator Facility and CUBE detector array, fission fragments from the $^{48}\mathrm{Ti}+^{204,208}\mathrm{Pb}$ and $^{50}\mathrm{Ti}+^{206,208}\mathrm{Pb}$ reactions have been measured, with the aim to investigate how the competition between quasifission and fusion-fission evolves with small changes in entrance-channel properties associated mainly with the nuclear structure. Analysis of mass-distribution…
Mass-asymmetric fission in the 40ca+142Nd reaction
Shell effects play a major role in fission. Mass-asymmetric fission observed in the spontaneous and low energy fission of actinide nuclei was explained by incorporating the fragment shell properties in liquid drop model. Asymmetric fission has also been observed in the low energy fission of neutron-deficient 180 Hg nuclei in recent β -delayed fission experiments. This low-energy β -delayed fission has been explained in terms of strong shell effects in pre-scission configurations associated with the system after capture. Calculations predicted asymmetric fission for heavier Hg isotopes as well, at compound nuclear excitation energy as high as 40 MeV. To explore the evolution of fission fragm…
Experimental study of the quasifission, fusion-fission, and de-excitation of Cf compound nuclei
Background: The fusion-evaporation reaction at energies around the Coulomb barrier is presently the only way to produce the heaviest elements. However, formation of evaporation residues is strongly hindered due to the competing fusion-fission and quasifission processes. Presently, a full understanding of these processes and their relationships has not been reached.Purpose: This work aims to use new fission measurements and existing evaporation residue and fission excitation function data for reactions forming Cf isotopes to investigate the dependence of the quasifission probability and characteristics on the identities of the two colliding nuclei in heavy element formation reactions.Method:…
Search for elements 119 and 120
A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the 50Ti+249Bk and 50Ti+249Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. Over four months of irradiation, the 249Bk target partially decayed into 249Cf, which allowed for a simultaneous search for both elements. Neither was detected at cross-section sensitivity levels of 65 and 200 fb for the 50Ti+249Bk and 50Ti+249Cf reactions, respectively, at a midtarget beam energy of Elab=281.5 MeV. The nonobservation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical pr…
Quasifission Dynamics in the Formation of Superheavy Elements
The European physical journal / Web of Conferences 163, 00023 - (2017). doi:10.1051/epjconf/201716300023
Quasifission in heavy and superheavy element formation reactions
Superheavy elements are created in the laboratory by the fusion of two heavy nuclei. The large Coulomb repulsion that makes superheavy elements decay also makes the fusion process that forms them very unlikely. Instead, after sticking together for a short time, the two nuclei usually come apart, in a process called quasifission. Mass-angle distributions give the most direct information on the characteristics and time scales of quasifission. A systematic study of carefully chosen mass-angle distributions has provided information on the global trends of quasifission. Large deviations from these systematics reveal the major role played by the nuclear structure of the two colliding nuclei in de…
Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion
Background: Mass-asymmetric fission has been observed in low energy fission of $^{180}\mathrm{Hg}$. Calculations predicted the persistence of asymmetric fission in this region even at excitation energies of 30--40 MeV.Purpose: To investigate fission mass distributions by populating different isotopes of Hg using heavy ion fusion reactions.Methods: Fission fragment mass-angle distributions have been measured for two reactions, $^{40}\mathrm{Ca}+^{142}\mathrm{Nd}$ and $^{13}\mathrm{C}+^{182}\mathrm{W}$, populating $^{182}\mathrm{Hg}$ and $^{195}\mathrm{Hg}$, respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Measurements were ma…
Fusion reaction Ca48+Bk249 leading to formation of the element Ts ( Z=117 )
The heaviest currently known nuclei, which have up to 118 protons, have been produced in 48Ca induced reactions with actinide targets. Among them, the element tennessine (Ts), which has 117 protons, has been synthesized by fusing 48Ca with the radioactive target 249Bk, which has a half-life of 327 d. The experiment was performed at the gas-filled recoil separator TASCA. Two long and two short α decay chains were observed. The long chains were attributed to the decay of 294Ts. The possible origin of the short-decay chains is discussed in comparison with the known experimental data. They are found to fit with the decay chain patterns attributed to 293Ts. The present experimental results confi…
Mechanisms Suppressing Superheavy Element Yields in Cold Fusion Reactions.
Superheavy elements are formed in fusion reactions which are hindered by fast nonequilibrium processes. To quantify these, mass-angle distributions and cross sections have been measured, at beam energies from below-barrier to 25% above, for the reactions of $^{48}\mathrm{Ca}$, $^{50}\mathrm{Ti}$, and $^{54}\mathrm{Cr}$ with $^{208}\mathrm{Pb}$. Moving from $^{48}\mathrm{Ca}$ to $^{54}\mathrm{Cr}$ leads to a drastic fall in the symmetric fission yield, which is reflected in the measured mass-angle distribution by the presence of competing fast nonequilibrium deep inelastic and quasifission processes. These are responsible for reduction of the compound nucleus formation probablity ${P}_{CN}$ …
Sensitive search for near-symmetric and super-asymmetric fusion-fission of the superheavy element Flerovium (Z=114)
Physics letters / B 820, 136601 (2021). doi:10.1016/j.physletb.2021.136601