0000000000107811
AUTHOR
Juan Galarza
Intensive Management and Natural Genetic Variation in Red Deer (Cervus elaphus)
The current magnitude of big-game hunting has outpaced the natural growth of populations, making artificial breeding necessary to rapidly boost hunted populations. In this study, we evaluated if the rapid increase of red deer (Cervus elaphus) abundance, caused by the growing popularity of big-game hunting, has impacted the natural genetic diversity of the species. We compared several genetic diversity metrics between 37 fenced populations subject to intensive management and 21 wild free-ranging populations. We also included a historically protected population from a national park as a baseline for comparisons. Contrary to expectations, our results showed no significant differences in geneti…
Maintenance of genetic diversity in cyclic populations - a longitudinal analysis in Myodes glareolus
Conspicuous cyclic changes in population density characterize many populations of small northern rodents. The extreme crashes in individual number are expected to reduce the amount of genetic variation within a population during the crash phases of the population cycle. By long-term monitoring of a bank vole (Myodes glareolus) population we show that despite the substantial and repetitive crashes in the population size, high heterozygosity is maintained throughout the population cycle. The striking population density fluctuation in fact only slightly reduced the allelic richness of the population during the crash phases. Effective population sizes of vole populations remained also relativel…
De novo Synthesis of Chemical Defenses in an Aposematic Moth
Many animals protect themselves from predation with chemicals, both self-made or sequestered from their diet. The potential drivers of the diversity of these chemicals have been long studied, but our knowledge of these chemicals and their acquisition mode is heavily based on specialist herbivores that sequester their defenses. The wood tiger moth (Arctia plantaginis, Linnaeus, 1758) is a well-studied aposematic species, but the nature of its chemical defenses has not been fully described . Here, we report the presence of two methoxypyrazines, 2-sec-butyl-3-methoxypyrazine and 2-isobutyl-3-methoxypyrazine, in the moths’ defensive secretions. By raising larvae on an artificial diet, we confir…