0000000000113167
AUTHOR
Vasco Fachada
Branched-Chain Amino Acid Deprivation Decreases Lipid Oxidation and Lipogenesis in C2C12 Myotubes
Impaired lipid metabolism is a common risk factor underlying several metabolic diseases such as metabolic syndrome and type 2 diabetes. Branched-chain amino acids (BCAAs) that include valine, leucine and isoleucine have been proven to share a role in lipid metabolism and hence in maintaining metabolic health. We have previously introduced a hypothesis suggesting that BCAA degradation mechanistically connects to lipid oxidation and storage in skeletal muscle. To test our hypothesis, the present study examined the effects of BCAA deprivation and supplementation on lipid oxidation, lipogenesis and lipid droplet characteristics in murine C2C12 myotubes. In addition, the role of myotube contract…
Physiological adaptations to resistance training in rats selectively bred for low and high response to aerobic exercise training
New Findings: What is the central question of this study? Can phenotypic traits associated with low response to one mode of training be extrapolated to other exercise-inducible phenotypes? The present study investigated whether rats that are low responders to endurance training are also low responders to resistance training. What is the main finding and its importance? After resistance training, rats that are high responders to aerobic exercise training improved more in maximal strength compared with low-responder rats. However, the greater gain in strength in high-responder rats was not accompanied by muscle hypertrophy, suggesting that the responses observed could be mainly neural in orig…
TopoCell – An image analysis tool to study intracellular topography
Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1α
Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in cytosolic…
Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses.
Background Cancer cachexia increases morbidity and mortality, and blocking of activin receptor ligands has improved survival in experimental cancer. However, the underlying mechanisms have not yet been fully uncovered. Methods The effects of blocking activin receptor type 2 (ACVR2) ligands on both muscle and non‐muscle tissues were investigated in a preclinical model of cancer cachexia using a recombinant soluble ACVR2B (sACVR2B‐Fc). Treatment with sACVR2B‐Fc was applied either only before the tumour formation or with continued treatment both before and after tumour formation. The potential roles of muscle and non‐muscle tissues in cancer cachexia were investigated in order to understand th…
Muscle follistatin gene delivery increases muscle protein synthesis independent of periodical physical inactivity and fasting
Blocking of myostatin and activins effectively counteracts muscle atrophy. However, the potential interaction with physical inactivity and fasting in the regulation of muscle protein synthesis is poorly understood. We used blockade of myostatin and activins by recombinant adeno-associated virus (rAAV)-mediated follistatin (FS288) overexpression in mouse tibialis anterior muscle. To investigate the effects on muscle protein synthesis, muscles were collected 7 days after rAAV-injection in the nighttime or in the daytime representing high and low levels of activity and feeding, respectively, or after overnight fasting, refeeding, or ad libitum feeding. Muscle protein synthesis was increased by…
Total and regional body adiposity increases during menopause : evidence from a follow‐up study
For women, menopausal transition is a time of significant hormonal changes, which may contribute to altered body composition and regional adipose tissue accumulation. Excess adiposity, and especially adipose tissue accumulation in the central body region, increases women's risk of cardiovascular and metabolic conditions and affects physical functioning. We investigated the associations between menopausal progression and total and regional body adiposity measured with dual-energy X-ray absorptiometry and computed tomography in two longitudinal cohort studies of women aged 47–55 (n = 230 and 148, mean follow-up times 1.3 ± 0.7 and 3.9 ± 0.2 years, mean baseline BMI 25.5 kg/m2). We also examin…
Enlarged PLIN5-uncoated lipid droplets in inner regions of skeletal muscle type II fibers associate with type 2 diabetes
Skeletal muscle physiology remains of paramount importance in understanding insulin resistance. Due to its high lipid turnover rates, regulation of intramyocellular lipid droplets (LDs) is a key factor. Perilipin 5 (PLIN5) is one of the most critical agents in such regulation, being often referred as a protector against lipotoxicity and consequent skeletal muscle insulin resistance. We examined area fraction, size, subcellular localization and PLIN5 association of LDs in two fiber types of type 2 diabetic (T2D), obese (OB) and healthy (HC) individuals by means of fluorescence microscopy and image analysis. We found that T2D type II fibers have a significant sub-population of large and inter…