0000000000113650

AUTHOR

Cristobal Vargas-jarillo

Pipeline Monitoring Architecture Based on Observability and Controllability Analysis

Recently many techniques with different applicability have been developed for damage detection in the pipeline. The pipeline system is designed as a distributed parameter system, where the state space of the distributed parameter system has infinite dimension. This paper is dedicated to the problem of observability as well as controllability analysis in the pipeline systems. Some theorems are presented in order to test the observability and controllability of the system. Computing the rank of the controllability and observability matrix is carried out using Matlab.

research product

Flow Control of Fluid in Pipelines Using PID Controller

In this paper, a PID controller is utilized in order to control the flow rate of the heavy oil in pipelines by controlling the vibration in a motor pump. A torsional actuator is placed on the motor pump in order to control the vibration on a motor and consequently controlling the flow rates in pipelines. The necessary conditions for the asymptotic stability of the proposed controller are validated by implementing the Lyapunov stability theorem. The theoretical concepts are validated utilizing numerical simulations and analysis, which proves the effectiveness of the PID controller in the control of flow rates in pipelines.

research product

Modelling and Analysis of Flow Rate and Pressure Head in Pipelines

Currently, various approaches with several utilities are proposed to identify damage in the pipeline. The pipeline system is modeled in the form of a distributed parameter system, such that the state space related to the distributed parameter system contains infinite dimension. In this paper, a novel technique is proposed to analyze and model the flow in the pipeline. Important theorems are proposed for testing the observability as well as controllability of the proposed model.

research product

The Effect of Baffles on Heat Transfer

For a long time technicians and engineers have used geometric changes of objects for the purpose of enhancement of heat transfer. The discovery and use of nanofluids and their unique properties lead to a new revolution on the heat transfer. This paper presents the simulation of Ansis software applied to the flow tube with a constant flux, also studies the effect of baffles and the use of nano particles on heat transfer.

research product

Control of Flow Rate in Pipeline Using PID Controller

In this paper a PID controller is utilized in order to control the flow rate of the heavy-oil in pipelines by controlling the vibration in motor-pump. A torsional actuator is placed on the motor-pump in order to control the vibration on motor and consequently controlling the flow rates in pipelines. The necessary conditions for asymptotic stability of the proposed controller is validated by implementing the Lyapunov stability theorem. The theoretical concepts are validated utilizing numerical simulations and analysis, which proves the effectiveness of the PID controller in the control of flow rates in pipelines.

research product