0000000000113701

AUTHOR

Keith A. Sharkey

showing 6 related works from this author

Plasticity of mouse enteric synapses mediated through endocannabinoid and purinergic signaling

2012

The myenteric and submucosal plexuses of the enteric nervous system (ENS) exist as interconnected integrative nerve networks within the wall of the gastrointestinal (GI) tract. Activity of the ENS is responsible for the control of the digestive and protective functions of the gut.1 Synaptic transmission between enteric neurons propagates information from intrinsic afferent neurons to interneurons, and then from interneurons to motor neurons that control final effectors such as smooth muscle and the secretory epithelium. Acetylcholine (ACh) is the major excitatory neurotransmitter in the myenteric plexus, acting on nicotinic receptors at synapses between neurons and on muscarinic receptors a…

Endocrine and Autonomic SystemsPhysiologyGastroenterologyBiologyNeurotransmissionInhibitory postsynaptic potentialEndocannabinoid systemSynapsechemistry.chemical_compoundnervous systemchemistryMetaplasticityEnteric nervous systemNeurotransmitterNeuroscienceMyenteric plexusNeurogastroenterology & Motility
researchProduct

The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment.

2011

Background: Cannabinoids are known to reduce intestinal inflammation. Atypical cannabinoids produce pharmacological effects via unidentified targets. We were interested in whether the atypical cannabinoid O-1602, reportedly an agonist of the putative cannabinoid receptor GPR55, reduces disease severity of dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid (TNBS)-induced colitis in C57BL/6N and CD1 mice. Methods: DSS (2.5% and 4%) was supplied in drinking water for 1 week while TNBS (4 mg) was applied as a single intrarectal bolus. Results: Both treatments caused severe colitis. Injection of O-1602 (5 mg/kg intraperitoneally) significantly reduced macroscopic and histological col…

AgonistMaleCannabinoid receptormedicine.drug_classColonNeutrophilsmedicine.medical_treatmentPharmacologyMotor ActivityInflammatory bowel diseaseArticleReceptors G-Protein-CoupledReceptor Cannabinoid CB2chemistry.chemical_compoundMiceReceptor Cannabinoid CB1CyclohexanesmedicineImmunology and AllergyAnimalsCannabidiolColitisReceptorReceptors CannabinoidPeroxidaseMice KnockoutAnalysis of VarianceO-1602business.industryCannabinoidsDextran SulfateGastroenterologyResorcinolsmedicine.diseaseColitisMice Inbred C57BLChemotaxis LeukocyteDisease Models AnimalchemistryGPR55Neutrophil InfiltrationTrinitrobenzenesulfonic AcidImmunologylipids (amino acids peptides and proteins)CannabinoidbusinessInflammatory bowel diseases
researchProduct

A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents

2010

BACKGROUND AND PURPOSE Cannabinoid CB1 receptor antagonists reduce food intake and body weight, but clinical use in humans is limited by effects on the CNS. We have evaluated a novel cannabinoid antagonist (AM6545) designed to have limited CNS penetration, to see if it would inhibit food intake in rodents, without aversive effects. EXPERIMENTAL APPROACH Cannabinoid receptor binding studies, cAMP assays, brain penetration studies and gastrointestinal motility studies were carried out to assess the activity profile of AM6545. The potential for AM6545 to induce malaise in rats and the actions of AM6545 on food intake and body weight were also investigated. KEY RESULTS AM6545 binds to CB1 recep…

PharmacologyAM251medicine.medical_specialtyCannabinoid receptormedicine.medical_treatmentAntagonistPharmacologyBiologyEndocrinologyInternal medicinemedicineCannabinoid receptor bindingCannabinoid receptor type 2Cannabinoid receptor antagonistlipids (amino acids peptides and proteins)CannabinoidReceptormedicine.drugBritish Journal of Pharmacology
researchProduct

Differential effects of CB1 neutral antagonists and inverse agonists on gastrointestinal motility in mice

2010

Background  Cannabinoid type 1 (CB1) receptors are involved in the regulation of gastrointestinal (GI) motility and secretion. Our aim was to characterize the roles of the CB1 receptor on GI motility and secretion in vitro and in vivo by using different classes of CB1 receptor antagonists. Methods  Immunohistochemistry was used to examine the localization of CB1 receptor in the mouse ileum and colon. Organ bath experiments on mouse ileum and in vivo motility testing comprising upper GI transit, colonic expulsion, and whole gut transit were performed to characterize the effects of the inverse agonist/antagonist AM251 and the neutral antagonist AM4113. As a marker of secretory function we mea…

AM251medicine.medical_specialtyCannabinoid receptorEndocrine and Autonomic SystemsPhysiologymedicine.medical_treatmentdigestive oral and skin physiologyGastroenterologyMotilityBiologyEndocrinologyRimonabantIn vivoInternal medicinemedicineInverse agonistCannabinoidReceptormedicine.drugNeurogastroenterology & Motility
researchProduct

The identification of peroxisome proliferator-activated receptor alpha-independent effects of oleoylethanolamide on intestinal transit in mice

2009

Oleoylethanolamide (OEA) is an endogenous lipid produced in the intestine that mediates satiety by activation of peroxisome proliferator-activated receptor alpha (PPARalpha). OEA inhibits gastric emptying and intestinal motility, but the mechanism of action remains to be determined. We investigated whether OEA inhibits intestinal motility by activation of PPARalpha. PPARalpha immunoreactivity was examined in whole mount preparations of mouse gastrointestinal (GI) tract. The effect of OEA on motility was assessed in wildtype, PPARalpha, cannabinoid CB(1) receptor and CB(2) receptor gene-deficient mice and in a model of accelerated GI transit. In addition, the effect of OEA on motility was as…

medicine.medical_specialtyPhysiologymedicine.medical_treatmentTRPV Cation ChannelsMotilityOleic AcidsBiologydigestive systemReceptor Cannabinoid CB2MiceOleoylethanolamidechemistry.chemical_compoundReceptor Cannabinoid CB1Glucagon-Like Peptide 1Internal medicinemedicineAnimalsPPAR alphaReceptorMice KnockoutGastric emptyingEndocrine and Autonomic Systemsdigestive oral and skin physiologyGastroenterologyImmunohistochemistryEndocannabinoid systemEndocrinologyMechanism of actionchemistrylipids (amino acids peptides and proteins)CannabinoidPeroxisome proliferator-activated receptor alphamedicine.symptomGastrointestinal MotilityEndocannabinoids
researchProduct

Inhibiting fatty acid amide hydrolase normalizes endotoxin-induced enhanced gastrointestinal motility in mice

2012

Background and purpose Gastrointestinal (GI) motility is regulated in part by fatty acid ethanolamides (FAEs), including the endocannabinoid (EC) anandamide (AEA). The actions of FAEs are terminated by fatty acid amide hydrolase (FAAH). We investigated the actions of the novel FAAH inhibitor AM3506 on normal and enhanced GI motility. Experimental approach We examined the effect of AM3506 on electrically-evoked contractility in vitro and GI transit and colonic faecal output in vivo, in normal and FAAH-deficient mice treated with saline or LPS (100 µg·kg(-1), i.p.), in the presence and absence of cannabinoid (CB) receptor antagonists. mRNA expression was measured by quantitative real time-PCR…

Pharmacologymedicine.medical_specialtyCannabinoid receptormedicine.medical_treatmentdigestive oral and skin physiologyMotilityIleumAnandamideBiologyEndocannabinoid systemchemistry.chemical_compoundEndocrinologymedicine.anatomical_structurenervous systemchemistryFatty acid amide hydrolaseInternal medicinemedicinelipids (amino acids peptides and proteins)CannabinoidReceptorpsychological phenomena and processesBritish Journal of Pharmacology
researchProduct