6533b7d2fe1ef96bd125f6f6

RESEARCH PRODUCT

The atypical cannabinoid O-1602 protects against experimental colitis and inhibits neutrophil recruitment.

Ken MackieAndreas ZimmerMartin StorrDonna-marie MccaffertyMisha BawaKeith A. SharkeyMohammad BashashatiDouglas MchughDieter SaurBeat LutzHuang-ming HuHuang-ming HuRudolf SchichoHeather B. Bradshaw

subject

AgonistMaleCannabinoid receptormedicine.drug_classColonNeutrophilsmedicine.medical_treatmentPharmacologyMotor ActivityInflammatory bowel diseaseArticleReceptors G-Protein-CoupledReceptor Cannabinoid CB2chemistry.chemical_compoundMiceReceptor Cannabinoid CB1CyclohexanesmedicineImmunology and AllergyAnimalsCannabidiolColitisReceptorReceptors CannabinoidPeroxidaseMice KnockoutAnalysis of VarianceO-1602business.industryCannabinoidsDextran SulfateGastroenterologyResorcinolsmedicine.diseaseColitisMice Inbred C57BLChemotaxis LeukocyteDisease Models AnimalchemistryGPR55Neutrophil InfiltrationTrinitrobenzenesulfonic AcidImmunologylipids (amino acids peptides and proteins)Cannabinoidbusiness

description

Background: Cannabinoids are known to reduce intestinal inflammation. Atypical cannabinoids produce pharmacological effects via unidentified targets. We were interested in whether the atypical cannabinoid O-1602, reportedly an agonist of the putative cannabinoid receptor GPR55, reduces disease severity of dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid (TNBS)-induced colitis in C57BL/6N and CD1 mice. Methods: DSS (2.5% and 4%) was supplied in drinking water for 1 week while TNBS (4 mg) was applied as a single intrarectal bolus. Results: Both treatments caused severe colitis. Injection of O-1602 (5 mg/kg intraperitoneally) significantly reduced macroscopic and histological colitis scores, and myeloperoxidase activity. The protective effect was still present in cannabinoid receptor 1 (CB1) and 2 (CB2) double knockout mice and mice lacking the GPR55 gene. To investigate a potential mechanism underlying the protection by O-1602 we performed neutrophil chemotactic assays. O-1602 concentration-dependently inhibited migration of murine neutrophils to keratinocyte-derived chemokine (KC), N-formyl-methionyl-leucyl-phenylalanine (fMLP), and the N-formyl-peptide receptor ligand WKYMVm. The inhibitory effect of O-1602 was preserved in neutrophils from CB1/CB2 double knockout and GPR55 knockout mice. No differences were seen in locomotor activity between O-1602-treated and control mice, indicating lack of central sedation by this compound. Conclusions: Our data demonstrate that O-1602 is protective against experimentally induced colitis and inhibits neutrophil recruitment independently of CB1, CB2, and GPR55 receptors. Thus, atypical cannabinoids represent a novel class of therapeutics that may be useful for the treatment of inflammatory bowel diseases. (Inflamm Bowel Dis 2010;)

10.1002/ibd.21538https://pubmed.ncbi.nlm.nih.gov/21744421