0000000000114696
AUTHOR
Albert Cohen
Learning multiresolution schemes for compression of images
We introduce a new type of multiresolution based on the Harten's framework using learning theory. This changes the point of view of the classical multiresolution analysis and it transforms an approximation problem in a learning problem opening great possibilities. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Tensor product multiresolution analysis with error control for compact image representation
A class of multiresolution representations based on nonlinear prediction is studied in the multivariate context based on tensor product strategies. In contrast to standard linear wavelet transforms, these representations cannot be thought of as a change of basis, and the error induced by thresholding or quantizing the coefficients requires a different analysis. We propose specific error control algorithms which ensure a prescribed accuracy in various norms when performing such operations on the coefficients. These algorithms are compared with standard thresholding, for synthetic and real images.
Edge detection insensitive to changes of illumination in the image
In this paper we present new edge detection algorithms which are motivated by recent developments on edge-adapted reconstruction techniques [F. Arandiga, A. Cohen, R. Donat, N. Dyn, B. Matei, Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques, Appl. Comput. Harmon. Anal. 24 (2) (2008) 225-250]. They are based on comparing local quantities rather than on filtering and thresholding. This comparison process is invariant under certain transformations that model light changes in the image, hence we obtain edge detection algorithms which are insensitive to changes in illumination.
Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques
Abstract This paper introduces and analyzes new approximation procedures for bivariate functions. These procedures are based on an edge-adapted nonlinear reconstruction technique which is an intrinsically two-dimensional extension of the essentially non-oscillatory and subcell resolution techniques introduced in the one-dimensional setting by Harten and Osher. Edge-adapted reconstructions are tailored to piecewise smooth functions with geometrically smooth edge discontinuities, and are therefore attractive for applications such as image compression and shock computations. The local approximation order is investigated both in L p and in the Hausdorff distance between graphs. In particular, i…
Data Compression with ENO Schemes: A Case Study
Abstract We study the compresion properties of ENO-type nonlinear multiresolution transformations on digital images. Specific error control algorithms are used to ensure a prescribed accuracy. The numerical results reveal that these methods strongly outperform the more classical wavelet decompositions in the case of piecewise smooth geometric images.
Learning-based multiresolution transforms with application to image compression
In Harten's framework, multiresolution transforms are defined by predicting finer resolution levels of information from coarser ones using an operator, called prediction operator, and defining details (or wavelet coefficients) that are the difference between the exact and predicted values. In this paper we use tools of statistical learning in order to design a more accurate prediction operator in this framework based on a training sample, resulting in multiresolution decompositions with enhanced sparsity. In the case of images, we incorporate edge detection techniques in the design of the prediction operator in order to avoid Gibbs phenomenon. Numerical tests are presented showing that the …
Design of Multiresolution Operators Using Statistical Learning Tools: Application to Compression of Signals
Using multiresolution based on Harten's framework [J. Appl. Numer. Math., 12 (1993), pp. 153---192.] we introduce an alternative to construct a prediction operator using Learning statistical theory. This integrates two ideas: generalized wavelets and learning methods, and opens several possibilities in the compressed signal context. We obtain theoretical results which prove that this type of schemes (LMR schemes) are equal to or better than the classical schemes. Finally, we compare traditional methods with the algorithm that we present in this paper.
Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci
We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 x 10(-8)). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with gen…