0000000000115461
AUTHOR
O. Forstner
"Safe" Coulomb excitation of 30Mg.
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient $\gamma$ -spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\gamma$ -ray yields the B(E2; 0$^{+}_{gs} \rightarrow 2^{+}_{1}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$fm$^{4}$. Our result is lower than values obtained at projectile fragmenttion facilities using the intermediate-ene…
The neutron-rich Mg isotopes: first results from MINIBALL at REX-ISOLDE
After the successful commissioning of the Radioactive beam EXperiment (REX) at ISOLDE (CERN) in 2002, first physics experiments were performed in 2003 which focussed on the neutron-rich Mg isotopes in the vicinity of the “island of inversion”. After introducing the REX facility and the modern γ spectrometer MINIBALL first preliminary results will be presented showing the high potential and physics opportunities offered by this new radioactive beam facility.
Bunching and cooling of radioactive ions with REXTRAP
The properties of radioactive ion beams produced by the present on-line target ion source technology are often not suitable for direct post acceleration. For that purpose pulsed and cooled beams of higher charged ions are required. In the case of REX-ISOLDE, the post accelerator at the CERN-ISOLDE radioactive beam facility, a unique system for beam preparation is used. It consists of a gas-filled cylindrical Penning trap (REXTRAP) for bunching and cooling followed by an electron beam ion source for charge state breeding. The Penning trap has been successfully operated with an efficiency of up to 40% and a total number of up to 107 ions stored. Buffer-gas sideband cooling at the ions’ cyclot…
Space Charge Effects in a Gas Filled Penning Trap
Mass selective buffer gas cooling is a technique used for ions that are stored in a Penning trap. The technique can be applied to all elements and the mass resolving power achieved has proven to be sufficient to resolve isobars. When not only a few but 106 and more ions are stored at the same time, space charge starts to play a dominant role for the spatial distribution. In addition, the observed cyclotron frequency is shifted. This work investigates these effects by numerical calculations.
“Safe” Coulomb Excitation ofMg30
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient γ spectrometer MINIBALL. Using Mg-30 ions accelerated to an energy of 2.25 MeV/u together with a thin Ni-nat target, Coulomb excitation of the first excited 2(+) states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation γ-ray yields the B(E2;0(gs)(+)R 2(1)(+)) value of Mg-30 was determined to be 241(31)e(2) fm(4). Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the …
Investigation of the Li9+H2→Li8+t reaction at REX-ISOLDE
The one-neutron transfer reaction Li-9 + H-2 -> Li-8 + t has been investigated in an inverse kinematics experiment by bombarding a deuterated polypropylene target with a 2.36 MeV/u Li-9 beam from the post-accelerator REX-ISOLDE at CERN. Excitation energies in Li-8 as well as angular distributions of the tritons were obtained and spectroscopic factors deduced. (c) 2006 Elsevier B.V. All rights reserved.
In-trap conversion electron spectroscopy
The Penning trap REXTRAP at ISOLDE was used to test the feasibility of in-trap conversion electron spectroscopy. The results of simulations, experiments with solid conversion electron sources as well as first on-line and tests with trapped radioactive ions are presented. In addition to obtaining high-resolution spectroscopic data, the detection of conversion electrons was found to be a useful tool for the diagnostics of the trap operation. The tests proved the feasibility of in-trap spectroscopy but also revealed some potential problems to be addressed in the future.
Space-Charge Effects with REXTRAP
The beam quality of radioactive ion beams produced by present target ion source technology is often not sufficient for direct post-acceleration. Furthermore, pulsed beams insure a more efficient use of an accelerator. In the case of REX-ISOLDE, the post accelerator at the CERN ISOLDE facility, a gas-filled Penning trap (REXTRAP) has been chosen for accumulation of the radioactive ions and conversion into cooled bunches. Radial centering of the ions is achieved by applying an rf field with a frequency equal to the cyclotron frequency of the desired ion species. The efficiency achieved in the first tests with different isotopes covering nearly the entire mass range was already >20%. Going to …
Feasibility of In-Trap Conversion Electron Spectroscopy
We have used REXTRAP at ISOLDE to test the feasibility of in-trap electron spectroscopy. The results of calculations, experiments with various electron sources as well as a first test with trapped radioactive ions are presented.
Status of REX-ISOLDE
REX-ISOLDE [1] is a post-accelerator situated at the ISOLDE radioactive ion beam facility placed at CERN, Geneva. It’s main aim is to increase the energy of light (A < 50) radioactive ions from 60 keV to 0.8–2.2MeV/u. REX—ISOLDE uses a new concept of post-acceleration of radioactive ion beams by using charge breeding of the ions in a high charge state ion source and the efficient acceleration of the highly charged ions in a short LINAC using modern ion accelerator structures. In a first step the radioactive ions are captured in a large gas-filled Penning trap. The task is to accumulate, cool and bunch the beam and prepare it for the injection into an electron beam ion source (EBIS). Cooling…
Search for new physics in beta-neutrino correlations with the WITCH spectrometer
The WITCH (Weak Interaction Trap for CHarged particles) experiment is a retardation spectrometer coupled to a Penning trap and measures the beta-neutrino angular correlation via the shape of the recoil energy spectrum. The present form of the Standard Model describes weak processes in terms of vector and axial-vector type interactions, but the possible presence of scalar and tensor interactions is not yet ruled out. The main aim of this experiment is a test of the Standard Model for possible admixture of scalar and tensor currents. (C) 2002 Elsevier Science B.V. All rights reserved.
Accelerated radioactive beams from REX-ISOLDE
In 2001 the linear accelerator of the Radioactive beam EXperiment (REX-ISOLDE) delivered for the first time accelerated radioactive ion beams, at a beam energy of 2 MeV/u. REX-ISOLDE uses the method of charge-state breeding, in order to enhance the charge state of the ions before injection into the LINAC. Radioactive singly-charged ions from the on-line mass separator ISOLDE are first accumulated in a Penning trap, then charge bred to an A/q < 4.5 in an electron beam ion source (EBIS) and finally accelerated in a LINAC from 5 keV/u to energies between 0.8 and 2.2 MeV/u. Dedicated measurements with REXTRAP, the transfer line and the EBIS have been carried out in conjunction with the first co…
First radioactive ions charge bred in REXEBIS at the REX-ISOLDE accelerator
REXEBIS is the charge breeder of the REX-ISOLDE post accelerator. The radioactive 1$^{+}$ ions produced at ISOLDE are accumulated, phase-space cooled and bunched in the REXTRAP, and thereafter injected into the EBIS with an energy up to 60 keV. The REXEBIS produced the first charge bred ions in August 2001 and has been running nearly non-stop during September to December 2001. It has delivered stable $^{39}$K$^{10+}$ and $^{23}$Na$^{6+}$ beams generated in the ion source in front of REXTRAP with a Na$^{7+}$ current exceeding 70 pA (6x10$^{7}$ p/s). Stable $^{27}$Al$^{7+}$ and $^{23}$Na$^{6+}$ from ISOLDE and also the first radioactive $^{26}$Na$^{7+}$ and $^{24}$Na$^{7+}$ beams (just 5x10$^…
Accelerating Radioactive Ion Beams With REX-ISOLDE
The post accelerator REX‐ISOLDE is installed at the ISOLDE facility at CERN, where a broad variety of radioactive ions can be addressed. Since the end of 2001 beams at the final energy of 2.2 MeV/u are available. REX‐ISOLDE uses a unique system of beam bunching and charge breeding. First a Penning trap accumulates and bunches the ions, which are delivered as a quasi‐continuous beam from the ISOLDE target‐ion‐source, and then an electron beam ion source (EBIS) charge‐breeds them to a mass‐to‐charge ratio below 4.5. This enables a very compact design for the following LINAC, consisting of a 4 rod RFQ, an IH structure and three 7‐gap‐resonators. The later ones allow a variation of the final en…
Cooling of radioactive ions with the Penning trap REXTRAP
Abstract Cooling of radioactive ion beams in a Penning trap is an essential component of the post-accelerator REX-ISOLDE at CERN. Prior to their charge-breeding and acceleration, ions from the on-line mass separator ISOLDE are accumulated, cooled and bunched with REXTRAP. This beam preparation provides short ion pulses with low emittance, key ingredient for a high efficiency of REX-ISOLDE. Two different cooling techniques have been investigated with REXTRAP. Both rely on the use of a buffer gas as the coolant but differ in the way the transversal compression of the stored ion cloud is achieved. Sideband cooling with a light buffer gas as coolant is the standard technique used at REXTRAP so …
Low energy reactions with radioactive ions at REX-ISOLDE-the 9Li + 2H case
19 pages, 12 figures, 2 tables.-- PACS nrs.: 25.60.-t; 25.45.-z; 27.20.+n.-- et al. ISOLDE Collaborattion and REX-ISOLDE Collaboration.