A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information
Delis, Ioannis | Berret, Bastien | Pozzo, Thierry | Panzeri, Stefano; International audience; ''Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activation…
Space-by-Time Modular Decomposition Effectively Describes Whole-Body Muscle Activity During Upright Reaching in Various Directions
The modular control hypothesis suggests that motor commands are built from precoded modules whose specific combined recruitment can allow the performance of virtually any motor task. Despite considerable experimental support, this hypothesis remains tentative as classical findings of reduced dimensionality in muscle activity may also result from other constraints (biomechanical couplings, data averaging or low dimensionality of motor tasks). Here we assessed the effectiveness of modularity in describing muscle activity in a comprehensive experiment comprising 72 distinct point-to-point whole-body movements during which the activity of 30 muscles was recorded. To identify invariant modules o…
Quantitative evaluation of muscle synergy models: a single-trial task decoding approach.
Delis, Ioannis | Berret, Bastien | Pozzo, Thierry | Panzeri, Stefano; International audience; ''Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements . Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies en codes task discriminating…
''Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies''
Chiovetto, Enrico | Berret, Bastien | Delis, Ioannis | Panzeri, Stefano | Pozzo, Thierry; International audience; ''A long standing hypothesis in the neuroscience community is that the central nervous system (CNS) generates the muscle activities to accomplish movements by combining a relatively small number of stereotyped patterns of muscle activations, often referred to as" muscle synergies." Different definitions of synergies have been given in the literature. The most well-known are those of synchronous, time-varying and temporal muscle synergies. Each one of them is based on a different mathematical model used to factor some EMG array recordings collected during the execution of variety…
Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements
AbstractVoluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task …
Identification of Spatial-Temporal Muscle Synergies from EMG Epochs of Various Durations: A Time-Warped Tensor Decomposition
Extraction of muscle synergies from electromyography (EMG) recordings relies on the analysis of multi-trial muscle activation data. To identify the underlying modular structure, dimensionality reduction algorithms are usually applied to the EMG signals. This process requires a rigid alignment of muscle activity across trials that is typically achieved by the normalization of the length of each trial. However, this time-normalization ignores important temporal variability that is present on single trials as result of neuromechanical processes or task demands. To overcome this limitation, we propose a novel method that simultaneously aligns muscle activity data and extracts spatial and tempor…