6533b855fe1ef96bd12afd6a
RESEARCH PRODUCT
Quantitative evaluation of muscle synergy models: a single-trial task decoding approach.
Stefano PanzeriStefano PanzeriIoannis DelisIoannis DelisThierry PozzoThierry PozzoThierry PozzoBastien BerretBastien Berretsubject
Computer scienceNeuroscience (miscellaneous)ORGANIZATIONMachine learningcomputer.software_genrelcsh:RC321-571Matrix decompositionNATURAL MOTOR BEHAVIORSFORCE03 medical and health sciencesCellular and Molecular NeurosciencePRIMITIVES0302 clinical medicinetask decodingmuscle synergiesMODULAR CONTROLMATRIX FACTORIZATIONOriginal Research ArticleMuscle activityInvariant (mathematics)Muscle synergylcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologyARM MOVEMENTS0303 health sciencessingle-trial analysisarm movementbusiness.industryDimensionality reduction[SCCO.NEUR]Cognitive science/NeurosciencereachingTIME-VARYING SYNERGIES[ SCCO.NEUR ] Cognitive science/NeurosciencePATTERNS''NATURAL MOTOR BEHAVIORSArtificial intelligenceFORCE''Single trialSPINAL-CORDbusinesscomputer030217 neurology & neurosurgeryDecoding methodsNeurosciencedescription
Delis, Ioannis | Berret, Bastien | Pozzo, Thierry | Panzeri, Stefano; International audience; ''Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements . Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies en codes task discriminating variations of muscle activity in individual trials. To address this question, here we conceive and develop an ovel computational framework to evaluate muscle synergy decompositions in task space. Unlike previous methods considering the total variance of muscle patterns (VAF based metrics), our approach focuses on variance discriminating execution of different tasks. The procedure is based on single-trial task decoding from muscle synergy activation features. The task decoding based metric evaluates quantitatively the mapping between synergy recruitment and task identification and automatically determines the minimal number of synergies that captures all the task discriminating variability in the synergy activations. In this paper, we first validate the method on plausibly simulated EMG datasets. We then show that it can be applied to different types of muscle synergy decomposition and illustrate its applicability to real data by using it for the analysis of EMG recordings during an arm pointing task. We find that time varying and synchronous synergies with similar number of parameters are equally efficient in task decoding, suggesting that in this experimental paradigm they are equally valid representations of muscle synergies. Overall, these findings stress the effectiveness of the decoding metric in systematically assessing muscle synergy decompositions in task space.''
year | journal | country | edition | language |
---|---|---|---|---|
2012-11-06 | Frontiers in computational neuroscience |